首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A detailed analysis of protein domains involved in DNA repair was performed by comparing the sequences of the repair proteins from two well-studied model organisms, the bacterium Escherichia coli and yeast Saccharomyces cerevisiae, to the entire sets of protein sequences encoded in completely sequenced genomes of bacteria, archaea and eukaryotes. Previously uncharacterized conserved domains involved in repair were identified, namely four families of nucleases and a family of eukaryotic repair proteins related to the proliferating cell nuclear antigen. In addition, a number of previously undetected occurrences of known conserved domains were detected; for example, a modified helix-hairpin-helix nucleic acid-binding domain in archaeal and eukaryotic RecA homologs. There is a limited repertoire of conserved domains, primarily ATPases and nucleases, nucleic acid-binding domains and adaptor (protein-protein interaction) domains that comprise the repair machinery in all cells, but very few of the repair proteins are represented by orthologs with conserved domain architecture across the three superkingdoms of life. Both the external environment of an organism and the internal environment of the cell, such as the chromatin superstructure in eukaryotes, seem to have a profound effect on the layout of the repair systems. Another factor that apparently has made a major contribution to the composition of the repair machinery is horizontal gene transfer, particularly the invasion of eukaryotic genomes by organellar genes, but also a number of likely transfer events between bacteria and archaea. Several additional general trends in the evolution of repair proteins were noticed; in particular, multiple, independent fusions of helicase and nuclease domains, and independent inactivation of enzymatic domains that apparently retain adaptor or regulatory functions.  相似文献   

2.
3.
The major facilitator superfamily (MFS) is one of the two largest families of membrane transporters found on Earth. It is present ubiquitously in bacteria, archaea, and eukarya and includes members that can function by solute uniport, solute/cation symport, solute/cation antiport and/or solute/solute antiport with inwardly and/or outwardly directed polarity. All homologous MFS protein sequences in the public databases as of January 1997 were identified on the basis of sequence similarity and shown to be homologous. Phylogenetic analyses revealed the occurrence of 17 distinct families within the MFS, each of which generally transports a single class of compounds. Compounds transported by MFS permeases include simple sugars, oligosaccharides, inositols, drugs, amino acids, nucleosides, organophosphate esters, Krebs cycle metabolites, and a large variety of organic and inorganic anions and cations. Protein members of some MFS families are found exclusively in bacteria or in eukaryotes, but others are found in bacteria, archaea, and eukaryotes. All permeases of the MFS possess either 12 or 14 putative or established transmembrane alpha-helical spanners, and evidence is presented substantiating the proposal that an internal tandem gene duplication event gave rise to a primordial MFS protein prior to divergence of the family members. All 17 families are shown to exhibit the common feature of a well-conserved motif present between transmembrane spanners 2 and 3. The analyses reported serve to characterize one of the largest and most diverse families of transport proteins found in living organisms.  相似文献   

4.
Recent studies have shown that archaea which were always thought to live under strict anoxic or extreme environmental conditions are also present in cold, oxygenated seawater, soils, the digestive tract of a holothurian deep-sea-deposit feeder, and a marine sponge. In this study, we show, by using PCR-mediated screening in other marine eukaryotes, that marine archaea are also present in the digestive tracts of flounder and grey mullet, two fish species common in the North Sea, in fecal samples of flounder, and in suspended particulate matter of the North Sea water column. No marine archaea could be detected in the digestive tracts of mussels or the fecal pellets of a copepod species. The archaeal 16S ribosomal DNA clone libraries of feces of flounder and the contents of the digestive tracts of grey mullet and flounder were dominated by group II marine archaea. The marine archaeal clones derived from flounder and grey mullet digestive tracts and feces formed a distinct cluster within the group II marine archaea, with 76.7 to 89. 8% similarity to previously described group II clones. Fingerprinting of the archaeal community of flounder digestive tract contents and feces by terminal restriction fragment length polymorphism of archaeal 16S rRNA genes after restriction with HhaI showed a dominant fragment at 249 bp, which is likely to be derived from group II marine archaea. Clones of marine archaea that were closely related to the fish-associated marine archaea clones were obtained from suspended particulate matter of the water column at two stations in the North Sea. Terminal restriction fragment length polymorphism fingerprinting of the archaeal community present in suspended particulate matter showed the same fragment pattern as was found for the archaeal community of the flounder digestive tract contents and feces. These data demonstrate that marine archaea are present in the digestive tracts and feces of very common marine fish. It is possible that the marine archaea associated with the digestive tracts of marine fish are liberated into the water column through the feces and subsequently contribute to the marine archaeal community of suspended particulate matter.  相似文献   

5.
We cloned two genes encoding DNA polymerases from the hyperthermophilic archaeon Pyrodictium occultum. The deduced primary structures of the two gene products have several amino acid sequences which are conserved in the alpha-like (family B) DNA polymerases. Both genes were expressed in Escherichia coli, and highly purified gene products, DNA polymerases I and II (pol I and pol II), were biochemically characterized. Both DNA polymerase activities were heat stable, but only pol II was sensitive to aphidicolin. Both pol I and pol II have associated 5'-->3' and 3'-->5' exonuclease activities. In addition, these DNA polymerases have higher affinity to single-primed single-stranded DNA than to activated DNA; even their primer extension abilities by themselves were very weak. A comparison of the complete amino acid sequences of pol I and pol II with two alpha-like DNA polymerases from yeast cells showed that both pol I and pol II were more similar to yeast DNA polymerase III (ypol III) than to yeast DNA polymerase II (ypol II), in particular in the regions from exo II to exo III and from motif A to motif C. However, comparisons region by region of each polymerase showed that pol I was similar to ypol II and pol II was similar to ypol III from motif C to the C terminus. In contrast, pol I and pol II were similar to ypol III and ypol II, respectively, in the region from exo III to motif A. These findings suggest that both enzymes from P. occultum play a role in the replication of the genomic DNA of this organism and, furthermore, that the study of DNA replication in this thermophilic archaeon may lead to an understanding of the prototypical mechanism of eukaryotic DNA replication.  相似文献   

6.
DNA polymerase from Sulfolobus solfataricus, strain MT4 (Sso DNA pol), was one of the first archaeal DNA polymerases to be isolated and characterized. Its encoding gene was cloned and sequenced, indicating that Sso DNA pol belongs to family B of DNA polymerases. By limited proteolysis experiments carried out on the recombinant homogeneous protein, we were able to demonstrate that the enzyme has a modular organization of its associated catalytic functions (DNA polymerase and 3'-5' exonuclease). Indeed, the synthetic function was ascribed to the enzyme C-terminal portion, whereas the N-terminal half was found to be responsible for the exonucleolytic activity. In addition, partial proteolysis studies were utilized to map conformational changes on DNA binding by comparing the cleavage map in the absence or presence of nucleic acid ligands. This analysis allowed us to identify two segments of the Sso DNA pol amino acid chain affected by structural modifications following nucleic acid binding: region 1 and region 2, in the middle and at the C-terminal end of the protein chain, respectively. Site-directed mutagenesis studies will be performed to better investigate the role of these two protein segments in DNA substrate interaction.  相似文献   

7.
The MutS protein of Escherichia coli plays a key role in the recognition and repair of errors made during the replication of DNA. Homologs of MutS have been found in many species including eukaryotes, Archaea and other bacteria, and together these proteins have been grouped into the MutS family. Although many of these proteins have similar activities to the E.coli MutS, there is significant diversity of function among the MutS family members. This diversity is even seen within species; many species encode multiple MutS homologs with distinct functions. To better characterize the MutS protein family, I have used a combination of phylogenetic reconstructions and analysis of complete genome sequences. This phylogenomic analysis is used to infer the evolutionary relationships among the MutS family members and to divide the family into subfamilies of orthologs. Analysis of the distribution of these orthologs in particular species and examination of the relationships within and between subfamilies is used to identify likely evolutionary events (e.g. gene duplications, lateral transfer and gene loss) in the history of the MutS family. In particular, evidence is presented that a gene duplication early in the evolution of life resulted in two main MutS lineages, one including proteins known to function in mismatch repair and the other including proteins known to function in chromosome segregation and crossing-over. The inferred evolutionary history of the MutS family is used to make predictions about some of the uncharacterized genes and species included in the analysis. For example, since function is generally conserved within subfamilies and lineages, it is proposed that the function of uncharacterized proteins can be predicted by their position in the MutS family tree. The uses of phylogenomic approaches to the study of genes and genomes are discussed.  相似文献   

8.
Amino acid racemases are ubiquitous throughout eubacteria. However, no amino acid racemases have yet been found in eukaryotes and archaea. We cloned a gene highly homologous to that for the aspartate racemase from the sulfur-dependent hyperthermophilic archaeum, Desulfurococcus strain SY. The product of the gene showed 35.2% amino acid sequence identity with the aspartate racemase of Streptococcus thermophilus IAM10064, and was also homologous to glutamate racemases around the putative catalytic cysteine residues. The encoded protein was expressed in Escherichia coli. The recombinant protein had amino acid racemizing activity, which was highly specific for aspartate and increased with temperature from 37 degrees C to 90 degrees C. Therefore, this was identified as the first hyperthermophilic archaeal amino acid racemase. A little aspartate racemizing activity was also detected in the crude extract of Desulfurococcus strain SY. The function of this aspartate racemase might be the uptake of -aspartate formed at high temperature or the production of -aspartate as a cell component. The fact that the amino acid racemases are distributed among both eubacteria and archaea suggests that endogenous -amino acids in mammals are also synthesized by amino acid racemases.  相似文献   

9.
Replication factor C (RF-C), an auxiliary factor for DNA polymerases delta and epsilon, is a multiprotein complex consisting of five different polypeptides. It recognizes a primer on a template DNA, binds to a primer terminus, and helps load proliferating cell nuclear antigen onto the DNA template. The RFC2 gene encodes the third-largest subunit of the RF-C complex. To elucidate the role of this subunit in DNA metabolism, we isolated a thermosensitive mutation (rfc2-1) in the RFC2 gene. It was shown that mutant cells having the rfc2-1 mutation exhibit (i) temperature-sensitive cell growth; (ii) defects in the integrity of chromosomal DNA at restrictive temperatures; (iii) progression through cell cycle without definitive terminal morphology and rapid loss of cell viability at restrictive temperatures; (iv) sensitivity to hydroxyurea, methyl methanesulfonate, and UV light; and (v) increased rate of spontaneous mitotic recombination and chromosome loss. These phenotypes of the mutant suggest that the RFC2 gene product is required not only for chromosomal DNA replication but also for a cell cycle checkpoint. It was also shown that the rfc2-1 mutation is synthetically lethal with either the cdc44-1 or rfc5-1 mutation and that the restrictive temperature of rfc2-1 mutant cells can be lowered by combining either with the cdc2-2 or pol2-11 mutation. Finally, it was shown that the temperature-sensitive cell growth phenotype and checkpoint defect of the rfc2-1 mutation can be suppressed by a multicopy plasmid containing the RFC5 gene. These results suggest that the RFC2 gene product interacts with the CDC44/RFC1 and RFC5 gene products in the RF-C complex and with both DNA polymerases delta and epsilon during chromosomal DNA replication.  相似文献   

10.
DNA polymerases carry out a large variety of synthetic transactions during DNA replication, DNA recombination and DNA repair. Substrates for DNA polymerases vary from single nucleotide gaps to kilobase size gaps and from relatively simple gapped structures to complex replication forks in which two strands need to be replicated simultaneously. Consequently, one would expect the cell to have developed a well-defined set of DNA polymerases with each one uniquely adapted for a specific pathway. And to some degree this turns out to be the case. However, in addition we seem to find a large degree of cross-functionality of DNA polymerases in these different pathways. DNA polymerase alpha is almost exclusively required for the initiation of DNA replication and the priming of Okazaki fragments during elongation. In most organisms no specific repair role beyond that of checkpoint control has been assigned to this enzyme. DNA polymerase delta functions as a dimer and, therefore, may be responsible for both leading and lagging strand DNA replication. In addition, this enzyme is required for mismatch repair and, together with DNA polymerase zeta, for mutagenesis. The function of DNA polymerase epsilon in DNA replication may be restricted to that of Okazaki fragment maturation. In contrast, either polymerase delta or epsilon suffices for the repair of UV-induced damage. The role of DNA polymerase beta in base-excision repair is well established for mammalian systems, but in yeast, DNA polymerase delta appears to fulfill that function.  相似文献   

11.
As the amount of available sequence data increases, it becomes apparent that our understanding of translation initiation is far from comprehensive and that prior conclusions concerning the origin of the process are wrong. Contrary to earlier conclusions, key elements of translation initiation originated at the Universal Ancestor stage, for homologous counterparts exist in all three primary taxa. Herein, we explore the evolutionary relationships among the components of bacterial initiation factor 2 (IF-2) and eukaryotic IF-2 (eIF-2)/eIF-2B, i.e., the initiation factors involved in introducing the initiator tRNA into the translation mechanism and performing the first step in the peptide chain elongation cycle. All Archaea appear to posses a fully functional eIF-2 molecule, but they lack the associated GTP recycling function, eIF-2B (a five-subunit molecule). Yet, the Archaea do posses members of the gene family defined by the (related) eIF-2B subunits alpha, beta, and delta, although these are not specifically related to any of the three eukaryotic subunits. Additional members of this family also occur in some (but by no means all) Bacteria and even in some eukaryotes. The functional significance of the other members of this family is unclear and requires experimental resolution. Similarly, the occurrence of bacterial IF-2-like molecules in all Archaea and in some eukaryotes further complicates the picture of translation initiation. Overall, these data lend further support to the suggestion that the rudiments of translation initiation were present at the Universal Ancestor stage.  相似文献   

12.
We have previously described the isolation and characterization of an intact multiprotein complex for DNA replication, designated the DNA synthesome, from human breast cancer cells and biopsied human breast tumor tissue. The purified DNA synthesome was observed to fully support DNA replication in vitro. We had also proposed a model for the breast cell DNA synthesome, in which DNA polymerases alpha, delta, and epsilon, DNA primase, and replication factor C (RF-C) represent members of the core component, or tightly associated, proteins of the complex. This model was based on the observed fractionation, chromatographic, and sedimentation profiles for these proteins. We report here that poly(ADP-ribose)polymerase (PARP) and DNA ligase 1 are also members of the breast cell DNA synthesome core component. More importantly, in this report we present the results of coimmunoprecipitation studies that were designed to map the protein-protein interactions between several members of the core component of the DNA synthesome. Consistent with our proposed model for the breast cell DNA synthesome, our data indicate that DNA polymerases alpha and delta, DNA primase, RF-C, as well as proliferating cell nuclear antigen (PCNA), tightly associate with each other in the complex, whereas DNA polymerase epsilon, PARP, and several other components were found to interact with the synthesome via a direct contact with only PCNA or DNA polymerase alpha. The association of PARP with the synthesome core suggests that this protein may serve a regulatory function in the complex. Also, the coimmunoprecipitation studies suggest that the three DNA polymerases alpha, delta, and epsilon all participate in the replication of breast cell DNA. To our knowledge this is the first report ever to describe the close physical association of polypeptides constituting the intact human breast cell DNA replication apparatus.  相似文献   

13.
Escherichia coli ribonucleases (RNases) HII, III, II, PH and D have been used to characterise new and known viral, bacterial, archaeal and eucaryotic sequences similar to these endo- (HII and III) and exoribonucleases (II, PH and D). Statistical models, hidden Markov models (HMMs), were created for the RNase HII, III, II and PH and D families as well as a double-stranded RNA binding domain present in RNase III. Results suggest that the RNase D family, which includes Werner syndrome protein and the 100 kDa antigenic component of the human polymyositis scleroderma (PMSCL) autoantigen, is a 3'-->5' exoribonuclease structurally and functionally related to the 3'-->5' exodeoxyribonuclease domain of DNA polymerases. Polynucleotide phosphorylases and the RNase PH family, which includes the 75 kDa PMSCL autoantigen, possess a common domain suggesting similar structures and mechanisms of action for these 3'-->5' phosphorolytic enzymes. Examination of HMM-generated multiple sequences alignments for each family suggest amino acids that may be important for their structure, substrate binding and/or catalysis.  相似文献   

14.
The cadherins are major mediators of calcium-dependent cell-cell adhesion and are also involved in cell signaling pathways during development. The classical cadherins, which are the definitive group of the cadherin superfamily, are transmembrane proteins that consist of an extracellular domain of five cadherin repeats, including an HAV tripeptide conserved in one binding surface within the first domain, and a highly conserved cytoplasmic domain that interacts with the actin cytoskeleton via the catenin proteins. These cadherins play major roles in vertebrate morphogenesis; they are expressed widely throughout development, antibodies to specific cadherins perturb a variety of developmental processes, and many gene knockouts are lethal at early stages of development. Phylogenetic analysis of the "classical" cadherins shows that in the vertebrates there are four paralog families. The rate of evolutionary change is radically different between the different paralogs, indicating that there are significantly different selection pressures on the functions of the various cadherins, both between the different paralogs in a single organism lineage and between different organism lineages within a single paralog family. There is also evidence for gene conversion between the E-cadherin and P-cadherin paralogs in Gallus gallus and possibly Xenopus laevis, but not between the same paralogs in the mammalian lineages. A scheme for the origin of the paralogs within the vertebrate lineage based on these analyses indicates that the presence of the four paralog families is a characteristic of vertebrates and that variation of cadherin structure and function is a significant factor in morphological evolution of vertebrates.  相似文献   

15.
16.
The three-domain proposal of Woese et al. (Proc. Natl. Acad. Sci. USA 87, 4576 (1990)) divides all living organisms into three primary groups or domains named Archaea (or archaebacteria), Bacteria (or eubacteria), and Eucarya (or eukaryotes), with Eucarya being relatives (or descendants) of Archaea. Although this proposal is currently widely accepted, sequence features and phylogenies derived from many highly conserved proteins are inconsistent with it and point to a close and specific relationship between archaebacteria and gram-positive bacteria, whereas gram-negative bacteria are indicated to be phylogenetically distinct. A closer relationship of archaebacteria to gram-positive bacteria in comparison to gram-negative bacteria is generally seen for the majority of the available gene/protein sequences. To account for these results, and the fact that both archaebacteria and gram-positive bacteria are prokaryotes surrounded by a single cell membrane, I propose that the primary division within prokaryotes is between Monoderm prokaryotes (surrounded by a single membrane) and Diderm prokaryotes (i.e., all true gram-negative bacteria containing both an inner cytoplasmic membrane and an outer membrane). This proposal is consistent with both cell morphology and signature sequences in different proteins. Protein phylogenies and signature sequences also show that all eukaryotic cells have received significant gene contributions from both an archaebacterium and a gram- negative eubacterium. Thus, the hypothesis that archaebacteria and eukaryotes shared a common ancestor exclusive of eubacteria, or that the ancestral eukaryotic cell directly descended from an archaea, is erroneous. These results call into question the validity of the currently popular three-domain proposal and the assignment of a domain status to archaebacteria. A new classifica- tion of organisms consistent with phenotype and macromolecular sequence data is proposed.  相似文献   

17.
BuPdGMPNHPP was synthesized and assayed as a non-incorporable inhibitor of B family DNA polymerases. The derivative was synthesized by preparation of the imidophosphorane of BuPdG followed by reaction with orthophosphate using the imidazolide method. BuPdGMPNHPP inhibited human DNA polymerase alpha and T4 DNA polymerase 10 and 3.5-times more potently than BuPdGTP, respectively, and was not a substrate for either enzyme. BuPdGMPNHPP acts as an active site affinity probe that could find use in co-crystallization trials of B family DNA polymerases.  相似文献   

18.
PMEG (9-(2-phosphonylmethoxyethyl)guanine) is an acyclic nucleotide analog being evaluated for its anti-proliferative activity. We examined the inhibitory effects of PMEG diphosphate (PMEGpp) toward DNA polymerases (pol) delta and epsilon and found it to be a competitive inhibitor of both these enzymes. The apparent Ki values for PMEGpp were 3-4 times lower than the Km values for dGTP. The analog was shown to function as a substrate and to be incorporated into DNA by both enzymes. Examination of the ability of pol delta and pol epsilon to repair the incorporated PMEG revealed that pol epsilon could elongate PMEG-terminated primers in both matched and mismatched positions with an efficiency equal to 27 and 85% that observed for dGMP-terminated control template-primers. Because PMEG acts as an absolute DNA chain terminator, the elongation of PMEG-terminated primers is possible only by cooperation of the 3'-5'-exonuclease and DNA polymerase activities of the enzyme. In contrast to pol epsilon, pol delta exhibited negligible activity on these template-primers, indicating that pol epsilon, but not pol delta, can repair the incorporated analog.  相似文献   

19.
20.
Protein sequences with similarities to Escherichia coli RecA were compared across the major kingdoms of eubacteria, archaebacteria, and eukaryotes. The archaeal sequences branch monophyletically and are most closely related to the eukaryotic paralogous Rad51 and Dmc1 groups. A multiple alignment of the sequences suggests a modular structure of RecA-like proteins consisting of distinct segments, some of which are conserved only within subgroups of sequences. The eukaryotic and archaeal sequences share an N-terminal domain which may play a role in interactions with other factors and nucleic acids. Several positions in the alignment blocks are highly conserved within the eubacteria as one group and within the eukaryotes and archaebacteria as a second group, but compared between the groups these positions display nonconservative amino acid substitutions. Conservation within the RecA-like core domain identifies possible key residues involved in ATP-induced conformational changes. We propose that RecA-like proteins derive evolutionarily from an assortment of independent domains and that the functional homologs of RecA in noneubacteria comprise an array of RecA-like proteins acting in series or cooperatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号