首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The procedures of the arbitration committee of north Germany for medical liability claims are discussed. This procedure is set into relation to that at court. Due to the continuously maintained communication between lawyers and physicians, which does not occur in a comparable manner in court, the choice to proceed at a arbitration committee and an expert board is seen as more useful and pertinent than at court. This is specifically explained.  相似文献   

2.
The Rous sarcoma virus (RSV) protease S9 variant has been engineered to exhibit high affinity for HIV-1 protease substrates and inhibitors in order to verify the residues deduced to be critical for the specificity differences. The variant has 9 substitutions (S38T, I42D, I44V, M73V, A100L, V104T, R105P, G106V, and S107N) of structurally equivalent residues from HIV-1 protease. Unlike the wild-type enzyme, RSV S9 protease hydrolyzes peptides representing the HIV-1 protease polyprotein cleavage sites. The crystal structure of RSV S9 protease with the inhibitor, Arg-Val-Leu-r-Phe-Glu-Ala-Nle-NH2, a reduced peptide analogue of the HIV-1 CA-p2 cleavage site, has been refined to an R factor of 0.175 at 2.4-A resolution. The structure shows flap residues that were not visible in the previous crystal structure of unliganded wild-type enzyme. Flap residues 64-76 are structurally similar to residues 47-59 of HIV-1 protease. However, residues 61-63 form unique loops at the base of the flaps. Mutational analysis indicates that these loop residues are essential for catalytic activity. Side chains of flap residues His 65 and Gln 63' make hydrogen bond interactions with the inhibitor P3 amide and P4' carbonyl oxygen, respectively. Other interactions of RSV S9 protease with the CA-p2 analogue are very similar to those observed in the crystal structure of HIV-1 protease with the same inhibitor. This is the first crystal structure of an avian retroviral protease in complex with an inhibitor, and it verifies our knowledge of the molecular basis for specificity differences between RSV and HIV-1 proteases.  相似文献   

3.
Magainins and mastoparans are examples of peptide antibiotics and peptide venoms, respectively. They have been grouped together as class L amphipathic helixes [Segrest, J.P., et al. (1990) Proteins 8, 103-117] because of similarities in the distribution of Lys residues along the polar face of the helix. Class L venoms lyse both eukaryotic and prokaryotic cells whereas class L antibiotics specifically lyse bacteria. The structural basis for the specificity of class L antibiotics is not well understood. Sequence analysis showed that class L antibiotics have a Glu residue on the nonpolar face of the amphipathic helix; this is absent from class L venoms. We synthesized three model class L peptides with or without Glu on the nonpolar face: 18LMG (LGSIWKFIKAFVGGIKKF), [E14]18LMG and [G5,E14]18LMG. Hemolysis, bacteriolysis, and bacteriostasis studies using these peptides showed that the specificity of lysis is due to both the presence of a Glu residue on the nonpolar face of the helix and the bulk of the nonpolar face. Studies using large unilamellar phospholipid vesicles showed that the inclusion of cholesterol greatly inhibited leakage by the two Glu-containing peptides. These results cannot be attributed to changes in the phase behavior of the lipids caused by the inclusion of cholesterol or to differences in the secondary structure of the peptides. These results suggest that eukaryotic cells are resistant to lysis by magainins because of peptide-cholesterol interactions in their membranes that inhibit the formation of peptide structures capable of lysis, perhaps by hydrogen bonding between Glu and cholesterol. Bacterial membranes, lacking cholesterol, are susceptible to lysis by magainins.  相似文献   

4.
5.
Three regions of sequence similarity have been reported in several protein and small-molecule S-adenosylmethionine-dependent methyltransferases. Using multiple alignments, we have now identified these three regions in a much broader group of methyltransferases and have used these data to define a consensus for each region. Of the 84 non-DNA methyltransferase sequences in the GenBank, NBRF PIR, and Swissprot databases comprising 37 distinct enzymes, we have found 69 sequences possessing motif I. This motif is similar to a conserved region previously described in DNA adenine and cytosine methyltransferases. Motif II is found in 46 sequences, while motif III is found in 61 sequences. All three regions are found in 45 of these enzymes, and an additional 15 have motifs I and III. The motifs are always found in the same order on the polypeptide chain and are separated by comparable intervals. We suggest that these conserved regions contribute to the binding of the substrate S-adenosylmethionine and/or the product S-adenosylhomocysteine. These motifs can also be identified in certain nonmethyltransferases that utilize either S-adenosylmethionine or S-adenosylhomocysteine, including S-adenosylmethionine decarboxylase, S-adenosylmethionine synthetase, and S-adenosylhomocysteine hydrolase. In the latter two types of enzymes, motif I is similar to the conserved nucleotide binding motif of protein kinases and other nucleotide binding proteins. These motifs may be of use in predicting methyltransferases and related enzymes from the open reading frames generated by genomic sequencing projects.  相似文献   

6.
p38 is a member of the mitogen-activated protein (MAP) kinase family and is a critical enzyme in the proinflammatory cytokine pathway. Other MAP kinase group members that share both structural and functional homology to p38 include the c-Jun NH2-terminal kinases (JNKs or SAPKs) and the extracellular-regulated protein kinases (ERKs). In this study, we determined the molecular basis for p38alpha inhibitor specificity exhibited by five compounds in the diarylimidazole, triarylimidazole, and triarylpyrrole classes of protein kinase inhibitors. These compounds are significantly more potent inhibitors of p38 compared to the JNKs and ERKs. Three active site ATP-binding domain residues in p38, T106, M109, and A157, selected based on primary sequence alignment, molecular modeling, and X-ray crystal structure data, were mutated to assess their role in inhibitor binding and enzymatic catalysis. All mutants, with the exception of T106M, had kinase activity within 3-fold of wild-type p38. Mutation of T106 to glutamine, the residue present at the corresponding position in ERK-2, or methionine, the corresponding residue in p38gamma, p38delta, and the JNKs, rendered all five inhibitors ineffective. The diarylimidazoles had approximately a 6-fold decrease in potency toward M109A p38. For the mutant A157V, all diarylimidazoles and triarylimidazoles tested were 5-10-fold more potent compared with wild-type p38. In contrast, two triarylpyrroles were 15-40-fold less potent versus A157V p38. These results showed that the molecular basis for the specificity of the p38 inhibitors was attributed largely to threonine 106 in p38 and that methionine 109 contributes to increased binding affinity for imidazole based inhibitors.  相似文献   

7.
Protein-tyrosine phosphatases can exhibit stringent substrate specificity in vivo, although the molecular basis for this is not well understood. The three-dimensional structure of the catalytically inactive protein-tyrosine phosphate 1B (PTP1B)/C215S complexed with an optimal substrate, DADEpYL-NH2, reveals specific interactions between amino acid residues in the substrate and PTP1B. The goal of this work is to rigorously evaluate the functional significance of Tyr46, Arg47, Asp48, Phe182, and Gln262 in substrate binding and catalysis, using site-directed mutagenesis. Combined with structural information, kinetic analysis of the wild type and mutant PTP1B using p-nitrophenyl phosphate and phosphotyrosine-containing peptides has yielded further insight into PTP1B residues, which recognize general features, as well as specific properties, in peptide substrates. In addition, the kinetic results suggest roles of these residues in E-P hydrolysis, which are not obvious from the structure of PTP1B/peptide complex. Thus, Tyr46 and Asp48 recognize common features of peptide substrates and are important for peptide substrate binding and/or E-P formation. Arg47 acts as a determinant of substrate specificity and is responsible for the modest preference of PTP1B for acidic residues NH2-terminal to phosphotyrosine. Phe182 and the invariant Gln262 are not only important for substrate binding and/or E-P formation but also important for the E-P hydrolysis step.  相似文献   

8.
9.
Antifreeze proteins (AFPs) have the unique ability to adsorb to ice and inhibit its growth. Many organisms ranging from fish to bacteria use AFPs to retard freezing or lessen the damage incurred upon freezing and thawing. The ice-binding mechanism of the long linear alpha-helical type I AFPs has been attributed to their regularly spaced polar residues matching the ice lattice along a pyramidal plane. In contrast, it is not known how globular antifreeze proteins such as type III AFP that lack repeating ice-binding residues bind to ice. Here we report the 1.25 A crystal structure of recombinant type III AFP (QAE isoform) from eel pout (Macrozoarces americanus), which reveals a remarkably flat amphipathic ice-binding site where five hydrogen-bonding atoms match two ranks of oxygens on the [1010] ice prism plane in the <0001> direction, giving high ice-binding affinity and specificity. This binding site, substantiated by the structures and properties of several ice-binding site mutants, suggests that the AFP occupies a niche in the ice surface in which it covers the basal plane while binding to the prism face.  相似文献   

10.
The anti-hIGF-I monoclonal antibody, alpha-sm1.2, was found to have substantial crossreactivity with human and rat IGF-II, but recognized rat IGF-I only when this ligand was present at very high concentration. (E50 for hIGF-I approximately 3.5 ng/tube vs. approximately 12,000 ng/tube for rat IGF-I). In the context of previous studies to define the epitope(s) of alpha-sm1.2, these findings point to the critical importance of aspartic acid at residue 20 in the B domain in determining the species and ligand specificity of this antibody. Previous studies using this antibody in rodent tissues may require reinterpretation in the light of these findings.  相似文献   

11.
The affinity and specificity of the binding interaction between ligands and their receptors are key for appropriate hormonal regulation of target tissues. However, it is now apparent that vasoactive intestinal polypeptide (VIP) binds to the rat secretin receptor with similar affinity to that for its natural ligand, secretin (Holtmann et al., 1995). In this report, we establish that this is not a characteristic of the human secretin receptor, and use rat-human secretin receptor chimeras, site mutants and truncated receptor constructs to establish the molecular basis for this unusual binding interaction. Of note, isolated N-terminal domains of the rat secretin and the VIP receptors are capable of high affinity binding of VIP. In the recently recognized secretin family of receptors, this domain has six conserved cysteine residues and disulfide bonds that are likely important to achieve the complex conformation critical for this binding. A single acidic residue (Asp98) present in the rat secretin receptor appears to be critical, because a site-mutant changing this to the polar, but uncharged residue present in that position in the human receptor (Asn) eliminates the high affinity binding of VIP. Of interest, a previously identified critical basic residue in VIP (Lys15) provides a candidate for charge-pairing with this residue, potentially aligning the peptide ligand in a nonproductive orientation within this receptor.  相似文献   

12.
13.
Coenzyme A is involved in a number of important metabolic pathways. Recently the structures of several coenzyme A binding proteins have been determined. We compare in some detail the structures of seven different coenzyme A protein complexes. These seven proteins all have distinctly different folds.  相似文献   

14.
15.
16.
BACKGROUND: The leucine biosynthetic enzyme 3-isopropylmalate dehydrogenase (IMDH) belongs to a unique class of bifunctional decarboxylating dehydrogenases. The two best-known members of this family, IMDH and isocitrate dehydrogenase (IDH), share a common structural framework and catalytic mechanism but have different substrate and cofactor specificities. IMDH is NAD(+)-dependent, while IDHs occur in both NAD(+)-dependent and NADP(+)-dependent forms. RESULTS: We have co-crystallized Thermus thermophilus IMDH with NAD+ and have determined the structure at 2.5 A resolution. NAD+ binds in an extended conformation. Comparisons with the structure in the absence of cofactor show that binding induces structural changes of up to 2.5 A in the five loops which form the dinucleotide-binding site. The adenine and diphosphate moieties of NAD+ are bound via interactions which are also present in the NADP(+)-IDH complex. Amino acids which interact with the NADP+ 2'-phosphate in IDH are substituted or absent in IMDH. The adenosine ribose forms two hydrogen bonds with Asp278, and the nicotinamide and nicotinamide ribose interact with Glu87 and Asp78, all unique to IMDH. CONCLUSIONS: NAD+ binding induces a conformational transition in IMDH, resulting in a structure that is intermediate between the most 'open' and 'closed' decarboxylating dehydrogenase conformations. Physiological specificity of IMDH for NAD+ versus NADP+ can be explained by the unique interaction between Asp278 and the free 2'-hydroxyl of the NAD+ adenosine, discrimination against the presence of the 2'-phosphate by the negative charge on Asp278, and the absence of potential favorable interactions with the 2'-phosphate of NADP+.  相似文献   

17.
The possible role of glycosphingolipids as adhesion receptors for the human gastric pathogen Helicobacter pylori was examined by use of radiolabeled bacteria, or protein extracts from the bacterial cell surface, in the thin-layer chromatogram binding assay. Of several binding specificities found, the binding to lactosylceramide is described in detail here, the others being reported elsewhere. By autoradiography a preferential binding to lactosylceramide having sphingosine/phytosphingosine and 2-D hydroxy fatty acids was detected, whereas lactosylceramide having sphingosine and nonhydroxy fatty acids was consistently nonbinding. A selective binding of H. pylori to lactosylceramide with phytosphingosine and 2-D hydroxy fatty acid was obtained when the different lactosylceramide species were incorporated into liposomes, but only in the presence of cholesterol, suggesting that this selectivity may be present also in vivo . Importantly, lactosylceramide with sphingosine and hydroxy fatty acids does not bind in this assay. Furthermore, a lactosylceramide-based binding pattern obtained for different trisaccharide glycosphingolipids is consistent with the assumption that this selectivity is due to binding of a conformation of lactosylceramide in which the oxygen of the 2-D fatty acid hydroxyl group forms a hydrogen bond with the Glc hydroxy methyl group, yielding an epitope presentation different from other possible conformers. An alternative conformation that may come into consideration corresponds to the crystal structure found for cerebroside, in which the fatty acid hydroxyl group is free to interact directly with the adhesin. By isolating glycosphingolipids from epithelial cells of human stomach from seven individuals, a binding of H.pylori to the diglycosylceramide region of the non-acid fraction could be demonstrated in one of these cases. Mass spectrometry showed that the binding-active sample contained diglycosylceramides with phytosphingosine and 2-D hydroxy fatty acids with 16-24 carbon atoms in agreement with the results related above.  相似文献   

18.
Following intrastriatal administration of dopamine-, GABA-, and encephalinergic drugs, the changes occurring in the rat behaviour were associated with a concrete transmitter system's activity and neostriatum polyfunctionality (and not an unspecific nature).  相似文献   

19.
20.
In a situation so far unique among neurotransmitter receptors, glutamate receptors share amino acid sequence similarities with the bacterial periplasmic binding proteins (PBPs). On the basis of the primary structure similarity of two bacterial periplasmic proteins (lysine/arginine/ornithine- and phosphate-binding proteins) with the chick cerebellar kainate-binding protein (KBP), a member of the ionotropic glutamate receptor family, we have generated a three-dimensional model structure of the KBP extracellular domain. By an interplay between homology modeling and site-directed mutagenesis, we have investigated the kainate binding properties of 55 different mutants (corresponding to 43 positions) and studied the interactions of some of these mutants with various glutamatergic ligands. As a result, we present here the subsets of amino acids accounting for the binding free energies and specificities of KBP for kainate, glutamate, and CNQX and propose a three-dimensional model, at the microarchitectural level, of the glutamatergic binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号