首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fuel transports in high-temperature proton-exchange membrane fuel cells have been numerically examined. Both convective and diffusive fuel transports are analyzed in detail. The former is often neglected in straight flow channel configurations while it has been reported to become important for serpentine or interdigitated flow channel configurations. By using a two-dimensional isothermal model, we have performed numerical simulations of a high-temperature proton-exchange membrane fuel cell with a straight flow channel configuration. The present results show that even in a straight flow channel configuration, the convection can play a significant role in fuel transports for the anode side. Examination of the flow field data reveals that the anode gas mixture is transported toward the catalyst layer (CL) whereas the gas mixture in the cathode channel moves away from the reaction site. It is also observed that as the flow moves downstream, the flow rate decreases in the anode channel but increases in the cathode channel. Species transport data are examined in detail by splitting the total flux of fuel transport into convective and diffusive flux components. For oxygen transport in the cathode gas diffusion layer (GDL), diffusion is dominant; in addition, the convective flux has a negative contribution to the total oxygen flux and is negligible compared to the diffusion flux. However, for hydrogen transport to the reaction site, both convection and diffusion are shown to be important processes in the anode GDL. At high cell voltages (i.e., low current densities), it is even observed that the convective contribution to the total hydrogen flux is larger than the diffusive one.  相似文献   

2.
The poisoning effect of carbon monoxide (CO) on high-temperature proton-exchange membrane fuel cells (PEMFCs) is investigated with respect to CO concentration, operating temperature, fuel feed mode, and anode Pt loading. The loss in cell voltage when CO is added to pure hydrogen anode gas is a function of fuel utilization and anode Pt loading as well as obvious factors such as CO concentration, temperature and current density. The tolerance to CO can be varied significantly using a different experimental design of fuel utilization and anode Pt loading. A difference in cell performance with CO-containing hydrogen is observed when two cells with different flow channel geometries are used, although the two cells show similar cell performance with pure hydrogen. A different combination of fuel utilization, anode Pt loading and flow channel design can cause an order of magnitude difference in CO tolerance under identical experimental conditions of temperature and current density.  相似文献   

3.
This study investigated transient CO poisoning of a proton-exchange membrane fuel cell under either a fixed cell voltage or fixed current density. During CO poisoning tests, the cell performance decreases over time. Experiments were performed to identify which method yields better performance in CO poisoning tests. The results revealed that a change in cell voltage did not affect the stable polarization behavior after CO poisoning of the cell. On the other hand, a higher fixed current density yielded better tolerance of 52.7 ppm CO. The air bleeding technique was then applied using different timings for air introduction during CO poisoning tests. Air bleeding significantly improved the CO tolerance of the cell and recovered the performance after poisoning, regardless of the timing of air introduction. The effects of different anode catalyst materials on cell performance were also investigated during poisoning tests. Without air bleeding, a Pt–Ru alloy catalyst exhibited better CO tolerance than a pure Pt catalyst. However, the air bleeding technique can effectively increase the CO tolerance of cells regardless of the type of catalyst used.  相似文献   

4.
The damage caused by cell reversal during proton exchange membrane fuel cell (PEMFC) operation with fuel starvation was investigated by a single cell experiment. The samples from degraded membrane–electrode assemblies (MEAs) were characterized. Chemical analysis of the anode catalyst layer of MEA samples by energy dispersive X-ray analysis (EDX) clearly showed ruthenium dissolution from the anode catalyst particles. Severe ruthenium loss was observed especially in the fuel outlet region. A reduced carbon monoxide (CO) tolerance was found by CO stripping voltammetry and measurement of deteriorated the fuel cell performance. Surface area loss of the cathode platinum by sintering was also detected by transmission electron microscopy (TEM) analysis and cyclic voltammetry.  相似文献   

5.
Fuel starvation during start-up and shut-down processes can adversely affect the performance of proton-exchange membrane fuel cells. In this study, fuel starvation is induced intentionally by supplying hydrogen and air to the negative electrode (anode) side alternately, and the individual electrode potential is measured in situ using a dynamic hydrogen electrode. The positive electrode (cathode) potential is increased to 1.4 V when air/hydrogen boundaries developed on the anode side. The development of a high cathode potential causes oxidation of the carbon support with the amount of CO2 evolution proportional to the cathode potential above 1.0 V. Above ∼1.2 V, CO and SO2 are generated electrochemically or chemically and the rate of CO production is higher than that of SO2. Although a higher cathode potential is induced irrespective of the cell temperature, oxidation of the carbon support is retarded significantly at low temperatures.  相似文献   

6.
We have realized a novel hydrogen peroxide fuel cell that uses hydrogen peroxide (H2O2) as both an electron acceptor (oxidant) and a fuel. H2O2 is oxidized at the anode and reduced at the cathode. Power generation is based on the difference in catalysis toward H2O2 between the anode and cathode. The anode catalyst oxidizes H2O2 at a more negative potential than that at which the cathode catalyst reduces H2O2. We found that Ag is suitable for use as a cathode catalyst, and that Au, Pt, Pd, and Ni are desirable for use as anode catalysts. Alkaline electrolyte is necessary for power generation. The performance of this cell is clearly explained by cyclic voltammograms of H2O2 at these electrodes. This cell does not require a membrane to separate the anode and cathode compartments. Furthermore, separate paths are not needed for the fuel and electron acceptor (oxidant). These properties make it possible to construct fuel cells with a one-compartment structure.  相似文献   

7.
A one-dimensional, steady-state and isothermal model for a proton exchange membrane (PEM) fuel cell has been developed to investigate the effects of various parameters such as the molar fraction of nitrogen gas, relative humidity, temperature, pressure, membrane thickness, anode and cathode stoichiometric flow ratio and the distribution of oxygen in the cathode catalyst while water transfer in membrane is produced by diffusion, pressure gradient and electro-osmotic drag. The most critical problems to overcome in the proton exchange membrane (PEM) fuel cell technology are the water and thermal management. The results show that the cell performance increases as operating pressure and temperature are increased. The performance of cell can decrease by decreasing the relative humidity of inlet gases and increasing the membrane thickness. Increasing the anode and cathode stoichiometric flow ratio can also improve the cell performance. As the oxygen concentration becomes zero in about 8 percent depth of cathode catalyst layer, the thickness of cathode catalyst layer can be reduced 92 percent without any potential loss in output voltage. The cathode activation loss also becomes high by increasing the molar fraction of nitrogen gas. The modeling results agree very well with experimental results.  相似文献   

8.
A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell cathode has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various humidification conditions. It was found that the specific surface area of the electrolyte in the catalyst layers close to the membrane is of critical importance for the overall water balance. Applying a high specific electrolyte surface area close to the membrane (a water-uptake layer) can prevent drying out of the anode and flooding at the cathode while the average membrane water content is only weakly affected. The results also indicate that in contrast to common presumption membrane dehydration may occur at either anode or cathode side, entirely depending on the direction of the net water transport because the predominant transport mechanism is diffusion. Consequently, operating conditions with a high net water transport from anode to cathode should be avoided as it is important to keep the cathode catalyst layer well humidified in order to prevent high protonic losses. Addition of the micro-porous layer did not affect the overall water balance or membrane water content in our study.  相似文献   

9.
Despite serious methanol crossover issues in Direct Methanol Fuel Cells (DMFCs), the use of high-concentration methanol fuel is highly demanded to improve the energy density of passive fuel DMFC systems for portable applications. In this paper, the effects of a hydrophobic anode micro-porous layer (MPL) and cathode air humidification are experimentally studied as a function of the methanol-feed concentration. It is found in polarization tests that the anode MPL dramatically influences cell performance, positively under high-concentration methanol-feed but negatively under low-concentration methanol-feed, which indicates that methanol transport in the anode is considerably altered by the presence of the anode MPL. In addition, the experimental data show that cathode air humidification has a beneficial effect on cell performance due to the enhanced backflow of water from the cathode to the anode and the subsequent dilution of the methanol concentration in the anode catalyst layer. Using an advanced membrane electrode assembly (MEA) with the anode MPL and cathode air humidification, we report that the maximum power density of 78 mW/cm2 is achieved at a methanol-feed concentration of 8 M and cell operating temperature of 60 °C. This paper illustrates that the anode MPL and cathode air humidification are key factors to successfully operate a DMFC with high-concentration methanol fuel.  相似文献   

10.
Alkaline anion exchange membrane (AAEM) fuel cell is becoming more attractive because of its outstanding merits, such as fast electrochemical kinetics and low dependence on non-precious catalyst. In this study, a three-dimensional multiphase non-isothermal AAEM fuel cell model is developed. The modeling results show that the performance is improved with more anode humidification, but the improvement becomes less significant at higher humidification levels. The humidification level of anode can change the water removal mechanisms: at partial humidification, water is removed as vapor; and for full humidification, water is removed as liquid. Cathode humidification is even more critical than anode. Liquid water supply in cathode has a positive effect on performance, especially at high current densities. With more liquid water supply in cathode, liquid water starts moving from channel to CL, rather than being removed from CL. Liquid water supply in cathode is needed to balance the water amounts in anode and cathode. Decreasing the membrane thickness generally improves the cell performance, and the improvement is even enhanced with thinner membranes, due to the faster water diffusion between anode and cathode, which reduces the mass transport losses.  相似文献   

11.
In this report, we present the microscopic investigations on various fading mechanisms of a direct methanol fuel cell (DMFC). High energy X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopic analysis were applied to a membrane-electrode-assembly (MEA) before and after fuel cell operation to figure out the various factors causing its fading. High energy XRD analysis of the fresh and faded MEA revealed that the agglomeration of the catalyst particles in the cathode layer of the faded MEA was more significant than in the anode layer of the faded MEA. The XAS analysis demonstrated that the alloying extent of Pt (JPt) and Ru (JRu) in the anode catalyst was increased and decreased, respectively, from the fresh to the faded MEA, indicating that the Ru environment in the anode catalyst was significantly changed after the fuel cell operation. Based on the X-ray absorption edge jump measurements at the Ru K-edge on the anode catalyst of the fresh and the faded MEA it was found that Ru was dissolved from the Pt-Ru catalyst after the fuel cell operation. Both the Ru K-edge XAS and EDX analysis on the cathode catalyst layer of the faded MEA confirms the presence of Ru environment in the cathode catalyst due to the Ru crossover from the anode to the cathode side. The changes in the membrane and the gas diffusion layer (GDL) after the fuel cell operation were observed from the Raman spectroscopy analysis.  相似文献   

12.
It has recently been demonstrated that anion-exchange membrane direct ethanol fuel cells (AEM DEFCs) can yield a high power density. The operating stability and durability of this type of fuel cell is, however, a concern. In this work, we report the durability test of an AEM DEFC that is composed of a Pd/C anode, an A201 membrane, and a Fe-Co cathode and show that the major voltage loss occurs in the initial discharge stage, but the loss becomes smaller and more stable with the discharge time. It is also found that the irreversible degradation rate of the fuel cell is around 0.02 mV h−1, which is similar to the degradation rate of conventional acid direct methanol fuel cells (DMFCs). The experimental results also reveal that the performance loss of the AEM DEFC is mainly attributed to the anode degradation, while the performance of the cathode and the membrane remains relatively stable. The TEM results indicate that the particle size of the anode catalyst increases from 2.3 to 3.5 nm after the long-term discharge, which reduces the electrochemical active surface area and hence causes a decrease in the anode performance.  相似文献   

13.
Fuel of proton exchange membrane fuel cells (PEMFC) mostly comes from reformate containing CO, which will poison the fuel cell electrocatalyst. The effect of CO on the performance of PEMFC is studied in this paper. Several electrode structures are investigated for CO containing fuel. The experimental results show that thin-film catalyst electrode has higher specific catalyst activity and traditional electrode structure can stand for CO poisoning to some extent. A composite electrode structure is proposed for improving CO tolerance of PEMFCs. With the same catalyst loading, the new composite electrode has improved cell performance than traditional electrode with PtRu/C electrocatalyst for both pure hydrogen and CO/H2. The EDX test of composite anode is also performed in this paper, the effective catalyst distribution is found in the composite anode.  相似文献   

14.
Transient behaviour is a key parameter for the vehicular application of proton-exchange membrane (PEM) fuel cell. The goal of this presentation is to construct better control technology to increase the dynamic performance of a PEM fuel cell. The PEM fuel cell model comprises a compressor, an injection pump, a humidifier, a cooler, inlet and outlet manifolds, and a membrane-electrode assembly. The model includes the dynamic states of current, voltage, relative humidity, stoichiometry of air and hydrogen, cathode and anode pressures, cathode and anode mass flow rates, and power. Anode recirculation is also included with the injection pump, as well as anode purging, for preventing anode flooding. A steady-state, isothermal analytical fuel cell model is constructed to analyze the mass transfer and water transportation in the membrane. In order to prevent the starvation of air and flooding in a PEM fuel cell, time delay control is suggested to regulate the optimum stoichiometry of oxygen and hydrogen, even when there are dynamical fluctuations of the required PEM fuel cell power. To prove the dynamical performance improvement of the present method, feed-forward control and Linear Quadratic Gaussian (LQG) control with a state estimator are compared. Matlab/Simulink simulation is performed to validate the proposed methodology to increase the dynamic performance of a PEM fuel cell system.  相似文献   

15.
Proton exchange membrane fuel cell (PEMFC) performance degrades when carbon monoxide (CO) is present in the fuel gas; this is referred to as CO poisoning. This paper investigates CO poisoning of PEMFCs by reviewing work on the electrochemistry of CO and hydrogen, the experimental performance of PEMFCs exhibiting CO poisoning, methods to mitigate CO poisoning and theoretical models of CO poisoning. It is found that CO poisons the anode reaction through preferentially adsorbing to the platinum surface and blocking active sites, and that the CO poisoning effect is slow and reversible. There exist three methods to mitigate the effect of CO poisoning: (i) the use of a platinum alloy catalyst, (ii) higher cell operating temperature and (iii) introduction of oxygen into the fuel gas flow. Of these three methods, the third is the most practical. There are several models available in the literature for the effect of CO poisoning on a PEMFC and from the modeling efforts, it is clear that small CO oxidation rates can result in much increased performance of the anode. However, none of the existing models have considered the effect of transport phenomena in a cell, nor the effect of oxygen crossover from the cathode, which may be a significant contributor to CO tolerance in a PEMFC. In addition, there is a lack of data for CO oxidation and adsorption at low temperatures, which is needed for detailed modeling of CO poisoning in PEMFCs. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
We characterized direct liquid fuel cells by electrochemical impedance spectroscopy (EIS) combined with reversible hydrogen electrode (RHE) under fuel cell operating conditions. EIS has been successfully implemented as an in-situ diagnostic tool using an impedance setup with RHE, capable of singling out individual contributions to the overall polarization of fuel cells and separating the anode and cathode contributions. While a direct methanol fuel cell (DMFC) anode was subject to substantial poisoning by reaction intermediates due to better accessibility of methanol to catalyst surface regardless of anode diffusion media, a direct formic acid fuel cell (DFAFC) anode suffered from significant mass transfer limitation depending on the anode diffusion media property and formic acid concentration. The high frequency resistance of a DFAFC cathode increased linearly with an increase of formic acid concentration by membrane dehydration effect. Interestingly, on both the DMFC and DFAFC cathodes, decrease in the mixed charge transfer resistance with an increase of fuel crossover was observed together with a drop in the cathode potential.  相似文献   

17.
To improve the performance and durability of a dead-ended anode (DEA) fuel cell, it is important to understand and characterize the degradation associated with the DEA operation. To this end, the multiple degradation phenomena in DEA operation were investigated via systematic experiments. Three lifetime degradation tests were conducted with different cell temperatures and cathode relative humidities, during which the temporal evolutions of cell voltage and high frequency resistance (HFR) were recorded. When the cathode supply was fully humidified and the cell temperature was mild, the cathode carbon corrosion was the predominant degradation observed from scanning electronic microscopy (SEM) of postmortem samples. The catalyst layer and membrane thickness were measured at multiple locations across the cell active area in order to map the degradation patterns. These observations confirm a strong correlation between the cathode carbon corrosion and the anode fuel starvation occurring near the cell outlet. When the cathode supply RH reduced to 50%, membrane pin-hole failures terminated the degradation test. Postmortem analysis showed membrane cracks and delamination in the inlet region where membrane water content was the lowest.  相似文献   

18.
《Journal of power sources》2005,145(2):495-501
In the present paper, the effect of electrode preparation procedure on the structural properties of membrane electrode assembly (MEA) and consequently on the performance of direct methanol fuel cells (DMFCs) was investigated. Commercial PtRu black anode catalyst and Pt black cathode catalyst were characterized by XRD in their initial form and in their intermediate and final states after each step involved in catalyst-coated membrane electrode preparation procedure by a decal transfer method (DTM). XRD results demonstrated that the DTM process has a significant effect on the catalyst structural properties, especially on the particle size of Pt black cathode catalyst. It is also discussed that among all the steps involved in the electrode fabrication procedure, catalyst ink preparation and high temperature transfer process are key factors affecting the particle size of Pt black catalyst. Furthermore, it was found that the maximum power density of the single DMFC using a MEA fabricated by the DTM, when air is used as oxidant, is more than two times greater than that of the cell using conventionally prepared MEA, and more than three times greater when pure oxygen is used as oxidant. This could be attributed to the easier mass transportation due to the thinner catalyst layer and the better contact between the catalyst layer and the electrolyte membrane in the former case, even if, according to in situ CO stripping voltammetry results in the fuel cell anode environment, the surface composition of PtRu anode has been changed.  相似文献   

19.
The water required for the methanol oxidation reaction in a direct methanol fuel cell (DMFC) operating with neat methanol can be supplied by diffusion from the cathode to the anode through the membrane. In this work, we present a method that allows the water transport rate through the membrane to be in-situ determined. With this method, the effects of the design parameters of the membrane electrode assembly (MEA) and operating conditions on the water transport through the membrane are investigated. The experimental data show that the water flux by diffusion from the cathode to the anode is higher than the opposite flow flux of water due to electro-osmotic drag (EOD) at a given current density, resulting in a net water transport from the cathode to the anode. The results also show that thinning the anode gas diffusion layer (GDL) and the membrane as well as thickening the cathode GDL can enhance the water transport flux from the cathode to the anode. However, a too thin anode GDL or a too thick cathode GDL will lower the cell performance due to the increases in the water concentration loss at the anode catalyst layer (CL) and the oxygen concentration loss at the cathode CL, respectively.  相似文献   

20.
It is found that carbon monoxide (CO) poisoning could be mitigated by increasing only cathode backpressure for a proton exchange membrane fuel cell (PEMFC) with ultra-thin membranes (≤25 μm). This mitigation can be explained by a heterogeneous oxidation of CO on a Pt-Ru/C anode by the permeated O2 which is known as “internal air bleed” in his paper. A steady-state model which accounts for this internal air bleed has been developed to model the Pt-Ru/C anode polarization data when 50 ppm CO in H2 is used as anode feed gas. The modeling results show that the mitigation of CO poisoning by the internal air bleed even exists at ambient conditions for a PEMFC with an ultra-thin membrane. Therefore, the effect of internal air bleed must be considered for modeling fuel cell performance or anode polarization data if an ultra-thin membrane and a low level of CO concentration are used for a Pt-Ru/C anode. An empirical relationship between the amount of internal air bleed used for the mitigation of CO poisoning and the fraction of free Pt sites is provided to facilitate the inclusion of an internal air bleed term in the modeling of anode polarization and the fuel cell performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号