首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文介绍了分形几何应用于汽油机燃烧模型的发展概况。国内外研究表明:汽油机燃烧火焰具有分形特性,因此用分形来描述火焰是恰当的。汽油机燃烧火焰的分形尺度大约在0.13 m m 到几个m m 之间。利用分形建立的汽油机准维燃烧模型对发动机性能进行模拟可以很好地反映燃烧过程。  相似文献   

2.
The flame surface density (FSD) based reaction rate closure is one of the most important methodologies of turbulent premixed flame modeling in the context of Large Eddy Simulations (LES). The transport equation for the Favre-filtered reaction progress variable needs closure of the filtered reaction rate and the subgrid scalar flux (SGSF). The SGSF in premixed turbulent flames has both gradient and countergradient components, where the former is typically modeled using eddy diffusivity and the latter can be modeled either on its own or in combination with the filtered reaction rate term using an appropriate wrinkling factor. The scope of the present work is to identify an explicit SGSF closure for the optimum performance in combination with an already established LES FSD model. The performance of different SGSF models for premixed turbulent combustion has been assessed recently by the authors using a Direct Numerical Simulation (DNS) database of freely propagating turbulent premixed flames with a range of different values of turbulent Reynolds number. The two most promising models have been implemented in the LES code. The modeling methodology identified based on a priori DNS analysis is assessed further a posteriori by comparing the LES simulation results of turbulent methane Bunsen flames with the well-documented experimental data. A significant change of the overall flame speed is not observed for different SGSF models. However, the flame shape and thickness respond to the modeling of SGSF. Considering the fact that the SGSF models have very different characteristics, the overall effect on the LES results in this work is smaller than expected. An extension of a previous a priori DNS analysis provides detailed explanations for the observed behavior.  相似文献   

3.
The goals of the present review paper are; (i) to introduce experimental facilities and numerical tools applied to investigating inhomogeneously premixed flames, (ii) to summarize recent progress in revealing and understanding local phenomena (e.g. back-supported combustion or generation of flame surface area) that stem from the influence of mixture inhomogeneities on flame propagation through flammable reactants, (iii) to show state-of-the-art of unsteady multidimensional RANS and LES research into inhomogeneously premixed turbulent flames and to discuss models invoked for this purpose, and (iv) to highlight issues that still challenge researchers who develop such models.  相似文献   

4.
Abstract

The generalized flame surface density (FSD) transport conditional on local flow topologies in premixed turbulent flames has been analyzed based on a detailed chemistry direct numerical simulation database of statistically planar turbulent hydrogen-air premixed flames with an equivalence ratio of 0.7 representing the corrugated flamelets, thin reaction zones and broken reaction zones regimes of combustion. The local flow topologies have been categorized by the values of the three invariants of the velocity gradient tensor and the statistical behaviors of the generalized FSD and different terms of its transport equation conditional on these flow topologies have been analyzed in detail for different choices of the reaction progress variable. The qualitative behavior of the different terms of the generalized FSD transport equation has been found to be similar for different choices of reaction progress variable but the statistical behaviors of the tangential strain rate term and its components have been found to be affected by the regime of combustion. The topologies, which exist for all values of dilatation rate, contribute significantly to the generalized FSD transport in premixed turbulent flames for all regimes of combustion. An unstable nodal flow topology, which is representative of a counter-flow configuration, has been found to be a dominant contributor to the FSD transport for all regimes of combustion irrespective of the choice of reaction progress variable. Moreover, a focal topology which is obtained only for positive values of dilatation rate, has been found to contribute significantly, especially to the curvature and propagation terms of the FSD transport equation for all regimes of combustion including the broken reaction zones regime. However, the contributions of the flow topologies to the turbulent transport and tangential strain rate term, which are obtained only for positive dilatation rates, have been found to weaken from the corrugated flamelets to the broken reaction zones regime.  相似文献   

5.
The effects of global Lewis number on the behavior of Reynolds heat and mass fluxes in turbulent premixed flames are studied based on three-dimensional direct numerical simulation (DNS) of a number of statistically planar turbulent premixed flames with a global Lewis number ranging from Le = 0.34 to 1.2. For the same values of initial turbulent flow field parameters and duration of flame-turbulence interaction, it has been found that both Reynolds heat and mass fluxes may exhibit countergradient transport for flames with a Lewis number significantly smaller than unity; whereas predominantly gradient-type transport is obtained for flames with a Lewis number closer to unity. It is demonstrated that strong flame normal acceleration due to greater heat release in the low Lewis number flames acts to promote countergradient transport, and that the magnitude of the flame normal acceleration decreases with increasing Lewis number. Algebraic models for Reynolds heat and mass fluxes are proposed in which the effects of the Lewis number on flame normal acceleration are explicitly taken into account. The predictions of the new models are compared with DNS data, and the models are found to capture the influence of the Lewis number on turbulent scalar flux in a satisfactory manner for all the flames considered in this study.  相似文献   

6.
7.
Two complementary simulations of premixed turbulent flames are discussed. Low Reynolds number two-dimensional direct numerical simulation of a premixed turbulent V flame is first performed, to further analyze the behavior of various flame quantities and to study key ingredients of premixed turbulent combustion modeling. Flame surface density, subgrid-scale variance of progress variables, and unresolved turbulent fluxes are analyzed. These simulations include fully detailed chemistry from a flame-generated tabulation (FPI) and the analysis focuses on the dynamics of the thin flame front. Then, a novel subgrid scale closure for large eddy simulation of premixed turbulent combustion (FSD-PDF) is proposed. It combines the flame surface density (FSD) approach with a presumed probability density function (PDF) of the progress variable that is used in FPI chemistry tabulation. The FSD is useful for introducing in the presumed PDF the influence of the spatially filtered thin reaction zone evolving within the subgrid. This is achieved via the exact relation between the PDF and the FSD. This relation involves the conditional filtered average of the magnitude of the gradient of the progress variable. In the modeling, this conditional filtered mean is approximated from the filtered gradient of the progress variable of the FPI laminar flame. Balance equations providing mean and variance of the progress variable together with the measure of the filtered gradient are used to presume the PDF. A three-dimensional larger Reynolds number flow configuration (ORACLES experiment) is then computed with FSD-PDF and the results are compared with measurements.  相似文献   

8.
Effects of premixed flames on turbulence and turbulent scalar transport   总被引:1,自引:0,他引:1  
Experimental data and results of direct numerical simulations are reviewed in order to show that premixed combustion can change the basic characteristics of a fluctuating velocity field (the so-called flame-generated turbulence) and the direction of scalar fluxes (the so-called countergradient or pressure-driven transport) in a turbulent flow. Various approaches to modeling these phenomena are discussed and the lack of a well-elaborated and widely validated predictive approach is emphasized. Relevant basic issues (the transition from gradient to countergradient scalar transport, the role played by flame-generated turbulence in the combustion rate, the characterization of turbulence in premixed flames, etc.) are critically considered and certain widely accepted concepts are disputed. Despite the substantial progress made in understanding the discussed effects over the past decades, these basic issues strongly need further research.  相似文献   

9.
The scalar mixing time scale, a key quantity in many turbulent combustion models, is investigated for reactive scalars in premixed combustion. Direct numerical simulations (DNS) of three-dimensional, turbulent Bunsen flames with reduced methane–air chemistry have been analyzed in the thin reaction zones regime. Previous conclusions from single step chemistry DNS studies are confirmed regarding the role of dilatation and turbulence–chemistry interactions on the progress variable dissipation rate. Compared to the progress variable, the mixing rates of intermediate species is found to be several times greater. The variation of species mixing rates are explained with reference to the structure of one-dimensional premixed laminar flames. According to this analysis, mixing rates are governed by the strong gradients which are imposed by flamelet structures at high Damköhler numbers. This suggests a modeling approach to estimate the mixing rate of individual species which can be applied, for example, in transported probability density function simulations. Flame–turbulence interactions which modify the flamelet based representation are analyzed.  相似文献   

10.
The influence of turbulent Reynolds number (Re t ) on the statistical behavior and modeling of turbulent scalar flux (TSF) has been analyzed using a direct numerical simulation database of freely propagating turbulent premixed flames. A range of different values of Re t is considered in which the Damköhler and Karlovitz numbers are modified independent of each other to bring about the variation of Re t . It has been found that the qualitative behavior of the various terms of the TSF transport equation does not change by the variation of Re t , but their relative contributions to the transport of TSF are affected to some extent. The effects of Re t on the modeling of the TSF using both algebraic and transport equation-based closures are addressed in detail. It is demonstrated that model parameters for an existing algebraic model, and the models for turbulent transport, pressure gradient and the reaction rate terms in the TSF transport equation, all exhibit Re t dependence for small values of Re t but all assume asymptotic values for Re t  ≥ 50. By contrast, the model parameters for the combined molecular diffusion term are found to be insensitive to the variation of turbulent Re t . Existing models for algebraic and transport equation-based closures of TSF have been modified to account for the observed Re t dependence.  相似文献   

11.
The behaviour of the turbulent scalar flux in premixed flames has been studied using Direct Numerical Simulation (DNS) with emphasis on the effects of Lewis number in the context of Reynolds-averaged closure modelling. A database was obtained from DNS of three-dimensional freely propagating statistically planar turbulent premixed flames with simplified chemistry and a range of global Lewis numbers from 0.34 to 1.2. Under the same initial conditions of turbulence, flames with low Lewis numbers are found to exhibit counter-gradient transport, whereas flames with higher Lewis numbers tend to exhibit gradient transport. The Reynolds-averaged transport equation for the turbulent scalar flux is analysed in detail and the performance of existing models for the unclosed terms is assessed with respect to corresponding quantities extracted from DNS data. Based on this assessment, existing models which are able to address the effects of non-unity Lewis number on turbulent scalar flux transport are identified, and new or modified models are suggested wherever necessary. In this way, a complete set of closure models for the scalar flux transport equation is prescribed for use in Reynolds-Averaged Navier-Stokes simulations.  相似文献   

12.
Knowledge of the fractal properties of premixed flame surfaces can potentially be used to help develop turbulent combustion models. Here, direct numerical simulations of low Damköhler number flames are used to analyse the fractal nature of the flames. Two sets of data are considered: (i) thermochemical hydrogen–air turbulent premixed plane-jet flames with detailed chemistry and (ii) thermonuclear flames in type Ia supernovae. A three-dimensional box counting method is used to investigate fractal dimension of the flame surface, characterising the self similarity of flame fronts. In the premixed flames, the fractal dimension is found to vary in time between 2.1 and 2.7. The supernovae flames in distributed combustion regimes yield fractal dimension about 2.7. The results for the maximum fractal dimensions are higher than previously reported. They are explained theoretically by a Reynolds number similarity argument which posits that the high Reynolds number, low Damköhler number limiting value of the fractal dimension is 8/3. Also tested is Mandelbrot’s fractal additive law which relates the fractal dimension determined in two dimensions, which is typical of experimental measurements, to that in three dimensions. The comparison of the fractal dimension in both two-dimensional and three-dimensional spaces supports the additive law, even though the flames considered do not formally satisfy isotropy. Finally, the inner-cut off is extracted from the hydrogen flames and found to be consistent in order of magnitude with Kolmogorov scaling.  相似文献   

13.
This paper presents a new burner design for lean premixed stratified combustion for experiments to validate models for numerical simulations. The burner demonstrates combustion phenomena relevant to technological applications, where flames are often turbulent, lean premixed, and stratified. The generic burner was designed for high Reynolds number flows and can stabilize a variety of different lean premixed flames. The burner’s design and its versatile operational conditions are introduced. Shear, stratification, and fuel type are parametrically varied to provide a sound database of related flow configurations. Reacting and corresponding non-reacting configurations are examined. Experimental setups and the results of laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) are presented and discussed. LDV measurements provide radial profiles of mean axial velocity, mean radial velocity, and turbulent kinetic energy as well as integral time scales. High-speed PIV is introduced as a novel technique to determine integral time and length scales and provide 2D 2-component velocity fields and related quantities, such as vorticity.  相似文献   

14.
Preferential species diffusion is known to have important effects on local flame structure in turbulent premixed flames, and differential diffusion of heat and mass can have significant effects on both local flame structure and global flame parameters, such as turbulent flame speed. However, models for turbulent premixed combustion normally assume that atomic mass fractions are conserved from reactants to fully burnt products. Experiments reported here indicate that this basic assumption may be incorrect for an important class of turbulent flames. Measurements of major species and temperature in the near field of turbulent, bluff-body stabilized, lean premixed methane–air flames (Le = 0.98) reveal significant departures from expected conditional mean compositional structure in the combustion products as well as within the flame. Net increases exceeding 10% in the equivalence ratio and the carbon-to-hydrogen atom ratio are observed across the turbulent flame brush. Corresponding measurements across an unstrained laminar flame at similar equivalence ratio are in close agreement with calculations performed using Chemkin with the GRI 3.0 mechanism and multi-component transport, confirming accuracy of experimental techniques. Results suggest that the large effects observed in the turbulent bluff-body burner are cause by preferential transport of H2 and H2O through the preheat zone ahead of CO2 and CO, followed by convective transport downstream and away from the local flame brush. This preferential transport effect increases with increasing velocity of reactants past the bluff body and is apparently amplified by the presence of a strong recirculation zone where excess CO2 is accumulated.  相似文献   

15.
The scalar dissipation rate signifies the local mixing rate and thus plays a vital role in the modeling of reaction rate in turbulent flames. The local mixing rate is influenced by the turbulence, the chemical, and the molecular diffusion processes which are strongly coupled in turbulent premixed flames. Thus, a model for the mean scalar dissipation rate, and hence the mean reaction rate, should include the contributions of these processes. Earlier models for the scalar dissipation rate include only a turbulence time scale. In this study, we derive exact transport equations for the instantaneous and the mean scalar dissipation rates. Using these equations, a simple algebraic model for the mean scalar dissipation rate is obtained. This model includes a chemical as well as a turbulence time scale and its prediction compares well with direct numerical simulation results. Reynolds-averaged Navier-Stokes calculations of a test flame using the model obtained here show that the contribution of dilatation to local turbulent mixing rate is important to predict the propagation phenomenon.  相似文献   

16.
A filtered tabulated chemistry model for LES of premixed combustion   总被引:1,自引:0,他引:1  
A new modeling strategy called F-TACLES (Filtered Tabulated Chemistry for Large Eddy Simulation) is developed to introduce tabulated chemistry methods in Large Eddy Simulation (LES) of turbulent premixed combustion. The objective is to recover the correct laminar flame propagation speed of the filtered flame front when subgrid scale turbulence vanishes as LES should tend toward Direct Numerical Simulation (DNS). The filtered flame structure is mapped using 1-D filtered laminar premixed flames. Closure of the filtered progress variable and the energy balance equations are carefully addressed in a fully compressible formulation. The methodology is first applied to 1-D filtered laminar flames, showing the ability of the model to recover the laminar flame speed and the correct chemical structure when the flame wrinkling is completely resolved. The model is then extended to turbulent combustion regimes by including subgrid scale wrinkling effects in the flame front propagation. Finally, preliminary tests of LES in a 3-D turbulent premixed flame are performed.  相似文献   

17.
A 3-dimensional computational fluid dynamics (CFD) simulation of a premixed hydrogen/air explosion in a large-scale domain is performed. The main feature of the numerical model is the solution of a transport equation for the reaction progress variable using a function for turbulent burning velocity that characterizes the turbulent regime of propagation of free flames derived by introducing the fractal theory. The model enables the calculation of premixed gaseous explosion without using fine mesh of the order of micrometer, which would be necessary to resolve the details of all instability mechanisms. The value of the empirical constant contained in the function for turbulent burning velocity is evaluated by analyzing the experimental data of hydrogen/air premixed explosion. The comparison of flame behavior between the experimental result and numerical simulation shows good agreement. The effect of mesh size on simulated flame propagation velocity is also tested, showing that the numerical result agrees reasonably well with experiment when the mesh size is less than about 20 cm.  相似文献   

18.
Molecular transport effects on turbulent flame propagation and structure   总被引:1,自引:0,他引:1  
Various experimental and DNS data show that premixed combustion is affected by the differences between the coefficients of molecular transport of fuel, oxidant, and heat not only at weak but also at moderate and high turbulence. In particular, turbulent flame speed increases with decreasing the Lewis number of the deficient reactant, the effect being very strong for lean hydrogen mixtures. Various concepts; flame instability, flame stretch, local extinction, leading point, that aim at describing the effects of molecular transport on turbulent flame propagation and structure are critically discussed and the results of relevant studies of perturbed laminar flames (unstable flames, flame balls, flames in vortex tubes) are reviewed. The crucial role played by extremely curved laminar flamelets in the propagation of moderately and highly turbulent flames is highlighted and the relevant physical mechanisms are discussed.  相似文献   

19.
Turbulent opposed-jet configurations have gained attention as a challenging test case to validate the mixing and combustion models used in the simulation of turbulent combustion. In general, validation requires comprehensive experimental information on flow and scalar fields, and the emergence of combustion large-eddy simulation (CLES) necessitated more advanced diagnostics. These laser-optical techniques allow measurements not only of single-point statistics but of structural information of the flame, such as correlations, gradients, and structure functions. This paper presents thorough experimental and numerical investigations of one isothermal and two reacting turbulent opposed jets with fuel jets consisting of partially premixed methane. Its focus is on one configuration at and one configuration close to the highest possible Reynolds numbers where flames could be stabilized. The experimental data presented comprise information on axial velocity, main species concentrations, temperature, mixture fraction, scalar dissipation rate, joint probability density functions, and structure functions. These quantities are compared to results of highly resolved CLES to show the configuration's suitability as a critical benchmark for state-of-the art combustion LES.  相似文献   

20.
Hydrogen combustion attracted much attention recently because of the need for a clean alternative energy. For the theoretical/numerical study of hydrogen combustion, there is a need for modeling capabilities for turbulent hydrogen flames. The present work examines the applicability of probability density function (pdf) turbulence models. For the purpose of accurate prediction of turbulent combustion, an algorithm that combines a conventional CFD flow solver with the Monte Carlo simulation of the pdf evolution equation has been developed. The algorithm is validated using experimental data for a heated turbulent plane jet. A study of H2–F2 diffusion flames has been carried out using this algorithm. Numerical results show that the pdf method is capable of correctly simulating turbulence effects on hydrogen combustion. © 1999 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号