首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of power sources》2004,125(2):273-279
In order to modify the cycle stability of low-Co AB5-type alloy, a trace of boron was added in MmNi3.8Co0.4Mn0.6Al0.2 hydrogen storage alloy. The low-Co AB5-type alloys MmNi3.8Co0.4Mn0.6Al0.2Bx(x=0, 0.1, 0.2, 0.3, 0.4) were prepared by cast and rapid quenching. The cycle lives and microstructures of the as-cast and quenched alloys were measured and analyzed. The effects of boron additive on the microstructures and cycle lives of as-cast and quenched alloys were investigated comprehensively. The obtained results showed that the addition of boron could dramatically enhance the cycle lives of the as-cast and quenched alloys. When boron content x increases from 0 to 0.4, the cycle lives of the as-cast alloys were increased from 118 to 183 cycles, and for as-quenched alloys with quenching rate of 38 m/s from 310 to 566 cycles.  相似文献   

2.
Composites of Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 alloy and Ni powders were mechanically synthesized and electrochemically tested in 6 M KOH electrolyte. In this work, the electrochemical properties of the alloys were greatly improved by mixing them with Ni, which plays a corrosion-resistance role in the alkali electrolyte and helps electron conduction. It has been shown that the numbers of activation cycles decreased compared with the alloys without Ni powder. All the alloys were activated after the second cycle. Improvements of the maximum discharge capacities were also found in this work. A maximum discharge capacity of 358 mAh g−1 was measured in the Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 + 250 wt.% Ni composite. In addition to that, adding Ni was found to enhance the high-rate discharge ability of the alloys, which appear to be good candidates for the realization of MH battery electrodes.  相似文献   

3.
The potentiostatic discharge method was used to determine the hydrogen diffusion coefficient in MmNi5, MmNi4.5Mn0.5, MmNi3.55Co0.75Mn0.4Al0.3 (Mm = mischmetal), ZrVNi, ZrV0.6Ni1.2Mn0.2 and Zr0.5Ti0.5 V0.6Ni1.0Mn0.4 alloy electrodes. The values obtained were of the order of 10−10cm2/s for the MmNi5 system alloys and 10−11cm2/s for the Zr-based Laves phase alloys. It was found that the higher the content of Mn in the alloy, the larger the value of the hydrogen diffusion coefficient. The effect of the Ni:alloy ratio in the mixture (alloy and Ni powder) on the diffusion coefficient and on the high rate of discharge were studied. The advantages of the potentiostatic discharge method is also discussed.  相似文献   

4.
《Journal of power sources》2002,109(2):281-286
LaNi5 intermetallic-hydride forming compound and several metal-substituted derivatives have been compared in terms of cycling behavior observed by means of the cavity microelectrode (CME) at high scan rates (50 mV s−1). LaNi3.55Mn0.4Al0.3Co0.75 was found to have a stable behavior over 1000 cycles, whereas, the capacity of LaNi5 decreases after only 200 cycles. The performances for the mono-substituted compounds are intermediate. The rechargeability decreases according to the following order: LaNi4.6Mn0.4>LaNi4.7Al0.3>LaNi4.25Co0.75>LaNi5. This study demonstrates the capability of the CME to check numerous battery materials in a very short period of time, which allows to bring out the effect due to the corrosion of the material.  相似文献   

5.
The AB5-type hydrogen storage alloy of Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 were synthesized and mixed with PVA (Polyvinyl Alcohol) or different percentage Ni powder as the test samples. The cycle stabilities of the composites were tested in 6 M KOH electrolyte through electrochemical method. The results indicated that all the samples with Ni powder have better cycle stabilities and flatter discharge voltage platform. The sample of Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 + 200 wt.% Ni has the highest capacity conservation rate of 80.5% and the longest discharge time of 5.2 h. The SEM images show that the particle diameters of the alloy decreased by 2 μm and the surface smoothed without sharp edges after adding Ni powder. It can be presumed that adding Ni can improve the cycle stability of the alloy of Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 in the alkaline electrolyte and enhance the reaction rate in the charge/discharge cycles.  相似文献   

6.
Charge and discharge testing, linear polarization, electrochemical impedance spectroscopy (EIS) and potential step chronoamperometry (PSCA) were used to investigate the electrochemical properties of the Ce-rich mischmetal MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy with different particle sizes. At a discharge current density of 900 mA/g, the alloy with small original particle size maintained a high rate dischargeability (HRD) above 86% while the alloy with large particle size could not discharge in the same potential region. The alloy with small original particle size also showed lower contact resistances and polarization resistance after full activation. Both the exchange current density and the hydrogen diffusion coefficient increased when the hydrogen concentration decreased. The charge-transfer reaction on the surface of alloy particles with different sizes should be mainly responsible for the differences in electrochemical properties, especially the HRD.  相似文献   

7.
The present study deals with investigations on the synthesis and characterization of negative electrode material for high energy density Ni-MH battery. The hydrogen storage material (MH) has been synthesized through thermal and spin melting techniques. A comparative study of materials synthesized by these two techniques with emphasis on the characteristics relevant to battery electrode applications has been carried out. In the present study, the modified composition of AB5-type corresponds to the spin as well as thermal melted versions of MmNi4.3Al0.3Mn0.4 and MmNi4.0Al0.3Mn0.4Si0.3.Structural characterization has revealed that, whereas for the spin melted MmNi4.3Al0.3Mn0.4 the dominant growth is perpendicular to the c-axis, it is parallel to the c-axis for MmNi4.0Al0.3Mn0.4Si0.3. The hydrogenation behaviour of these materials has been monitored through P-C-T and kinetic curves. Attempts have been made to establish a correlation between the structure and hydrogenation behaviour. The spin melted material (MmNi4.3Al0.3Mn0.4) exhibits reduced pulverization and hence is expected to have increased cycle life. This version of the material also exhibits higher storage capacity, faster kinetics and faster activation as compared to the conventionally prepared bulk form. The bulk version of the alloy with silicon has been found to undergo easy activation (2nd cycle) as compared to the bulk version of the alloy without silicon (6th cycle). The spin melted version of the material with silicon leads to smaller (finer) particle size material compared to the alloy form without silicon.  相似文献   

8.
《Journal of power sources》2006,159(1):159-162
In this paper, the substitution of different amounts of Cr for Ni in the hydrogen storage electrode alloy of Mg1.75Al0.25Ni has been carried out to form quaternary Mg1.75Al0.25Ni1−xCrx (0  x  0.3) alloys by means of solid diffusion method (DM). The XRD profiles exhibited that the quaternary alloys still kept the same main phase of Mg3AlNi2 (S.G. Fd3m) as that of ternary Mg1.75Al0.25Ni alloy. The electrochemical studies found that Cr substituted quaternary alloy reached its maximum discharge capacity (165 mAh g−1) after 2 cycles, which was larger than that of the Mg1.75Al0.25Ni alloy (154 mAh g−1). Among these quaternary alloys, the Mg1.75Al0.25Ni0.9Cr0.1 electrode alloy was found possessing the highest cycling capacity retention rate. Cyclic voltammetry (CV) results and anodic polarization curves demonstrated that appropriate content (x lower than 0.1) of Cr effectively improved the reaction activity of electrode and inhibited the cycling capacity degradation to some degree. Electrochemical impedance spectroscopy (EIS) analyses indicated that the increase of Cr content would raise the polarization resistance Rp on the particle surface of these quaternary alloys.  相似文献   

9.
《Journal of power sources》1996,63(2):267-270
A comparison is made of the properties of LaB5 (BNi3.55Co0.75Mn0.4Al0.3), La0.7R0.3B5 (RCe, Pr, Nd) and MmB5 (Mm is mischmetal in an atomic ratio of La:Ce:Pr:Nd = 0.7:0.2:0.05:0.05) alloy electrodes. X-ray diffraction results reveal that Ce, Pr, Nd substitute for La and decrease the unit cell volume. Pressure-composition isotherms of the electrode alloys are determined by an electrochemical method. The characteristics of the alloy electrodes, including initial activation, high-rate discharge, cycle life and self-discharge, are examined. It is found that partial replacement of La with Ce, Pr, Nd in the LaNi5-based alloy improves greatly the activation, high-rate discharge and cycle life of the electrode, but increases the self-discharge due to a higher dissociation pressure of the metal hydride.  相似文献   

10.
The structure and electrochemical properties of LaNi4.4 − xCo0.3Mn0.3Alx hydrogen storage alloys have been investigated by XRD and simulated battery test, including maximum capacity, cyclic stability, self-discharge, high-rate dischargeability (HRD). Samples A, B, C and D were used to represent alloys LaNi4.4Co0.3Mn0.3Al, LaNi4.3Co0.3Mn0.3Al0.1, LaNi4.2Co0.3Mn0.3Al0.2 and LaNi4.1Co0.3Mn0.3Al0.3 respectively. The results indicated that as-prepared LaNi4.4 − xCo0.3Mn0.3Alx alloys are all single-phase alloys with hexagonal CaCu5 type structure. The maximum discharge capacity is 330.4 mAh g−1 (Alloy C). With the increase of Al content from A to D, cycle life of alloy electrode has been improved. Higher capacity retention of 89.29% (after 50 charge/discharge cycles) has been observed for electrode D, while with a smaller capacity loss of 12.5% in its self-discharge test. Better high-rate charge/discharge behaviors have been observed in electrode B, and the maximum data is 54.7% at charge current of 900 mA/g) and 68.54% at discharge current of 1800 mA/g). Furthermore, the electrochemical impedance spectroscopy (EIS) analysis shown that the reaction of alloy electrode is controlled by charge-transfer step. The addition of Al results in the formation of protective layer of aluminum oxides on the surface of the alloy electrode, which is good for the improvement of electrode properties in alkaline solution and is detrimental for the charge-transfer process. Therefore, a suitable addition of Al is needed to improve its electrode properties.  相似文献   

11.
《Journal of power sources》2001,92(1-2):250-254
The electrochemical characteristics of the La0.8Ce0.2Ni2.5Co1.8Mn0.4Al0.3 compound, produced by mechanical alloying, are investigated for hydrogen storage in nickel-metal hydride (NiMH) batteries by discharging tests at constant current and by calculating equilibrium pressure of hydrogen from the equilibrium potentials. It is shown that the alloy produced by mechanical alloying, followed by annealing and activation exhibits high specific capacity at the stable potential plateau, even at the high discharge rate (10 mA cm−2), and low hydrogen equilibrium pressure. The alloy of such composition gives low capacity loss during cycling, which enables its application for metal hydride battery production.  相似文献   

12.
A series of experiments have been performed to investigate the effects of electrolyte composition and temperature on the high-rate discharge behaviors of MmNi5-based AB5 hydrogen storage alloy electrodes. Two types of AB5 electrodes have been used using different alloys: Ce-rich alloy V (La0.26 Ce0.44Pr0.1Nd0.2Ni3.55Co0.72Mn0.43Al0.3) and La-rich alloy N (La0.58Ce0.25Pr0.06 Nd0.11Ni3.66Co0.74Mn0.41Al0.18). Electrolytes EN were obtained by adding a saturated amount of Al2(SO4) 3 to the original electrolyte EO (6 M KOH + 1 wt% LiOH). The electrolyte EN has previously been shown to be very effective to stop the self-discharge of the AB5 electrodes, better charge/discharge cycle life have been observed. The electrochemical properties of the electrodes were measured by two methods: step mode high-rate discharge and continuous mode high-rate discharge. The results indicate that at 298 K and 333 K, high-rate discharge capacity of Ni–MH battery was mostly affected by the chemical composition of the electrolyte, then the type of alloy. Better dischargeabilities in high-rate discharge capacity have been observed in electrolyte EO than in electrolyte EN. The Ce-rich alloy V has a higher high-rate discharge capacity than La-rich alloy N. High-rate discharge capacity decreases in the following order: VEO > NEO > VEN > NEN (VEO denotes the combination of alloy V and electrolyte EO used in the test battery, similarly equivalent representations for NEN, VEO and VEN).  相似文献   

13.
The structure, kinetics and electrochemical characteristics of Mg2NiH4-x wt.% MmNi3.8Co0.75Mn0.4Al0.2 (x = 5, 10, 20, 40) composites prepared by mechanical milling have been investigated in this paper. XRD results indicate that the as-milled Mg2NiH4 shows nanocrystalline or amorphous-like structure, and it does not react with MmNi3.8Co0.75Mn0.4Al0.2 during mechanical milling. As the amount of MmNi3.8Co0.75Mn0.4Al0.2 increases, the maximum discharge capacity decreases initially from 508 mAh/g (x = 5) to 440 mAh/g (x = 10) and then increases to 509 mAh/g (x = 40). Meanwhile, the capacity retention (R10) increases from 12.8% (x = 5) to 23.4% (x = 40), and the corrosion potential of electrode (Ecorr) increases from −0.930 V to −0.884 V (vs. Hg/HgO). Especially, the more MmNi3.8Co0.75Mn0.4Al0.2 content the composite contains, the higher high rate dischargeability (HRD) the electrode exhibits, which could be attributed to the catalytic reaction and reduction of the Mg2NiH4 grain size brought by MmNi3.8Co0.75Mn0.4Al0.2. The improvement in electrode kinetics has been depicted from the bulk hydrogen diffusion coefficient (D), the exchange current density (I0) and the charge transfer resistance (Rct) on the alloy surface.  相似文献   

14.
The structure, hydrogen storage and electrochemical properties of annealed low-Co AB5-type intermetallic compounds have been investigated. La-alloy, Nd-alloy and Cr-alloy are used to represent La0.8Ce0.2Ni4Co0.4Mn0.3Al0.3, La0.6Ce0.2Nd0.2Ni4Co0.4Mn0.3Al0.3 and La0.6Ce0.2Nd0.2Ni3.8Co0.4Mn0.3Al0.3Cr0.2, respectively. The XRD results indicated that annealed samples are all single-phase alloys with CaCu5 type structure. The maximum of both hydrogen content and discharge capacity is obtained for La-alloy 1.23 wt%H2 and 321.1 mA h/g, respectively. All the investigated alloys are quiet stable with ΔH of hydrogen desorption about 36–38 kJ/mol H2. Cycle life of alloy electrode has been improved by partial substitution of La for Nd and Ni for Cr. The highest capacity retention of 92.2% after 100 charge/discharge cycles at 1C has been observed for Nd-alloy. The hydrogen diffusion coefficient measured by PITT is higher at the start of charging process and dramatically reduces by 2–3 order of magnitude with saturation of β-hydride. The highest value 6.9 × 10?13 cm2/s is observed for La alloy at 100% SOC. Partial substitution La for Nd and Cr for Ni in low-Co AB5 metal hydride alloys slightly reduces maximum discharge capacity, HRD performance and hydrogen diffusion kinetics. Low-Co alloys show good overall electrochemical properties compared to high-Co alloys and might be perspective materials for various electrochemical applications.  相似文献   

15.
The as-cast alloy with the composition of Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 prepared by induction melting was milled for 6, 15, 40 and 50 h in this work. The microstructures of alloys were analyzed by XRD and DSC. Two broadening effects of XRD peak caused by crystallite and microstrain were separated by approximate function method and least square method. Crystallite sizes and microstrains of the alloys were calculated. The results show that alloys milled for 6 h or 15 h consist of nanocrystalline and polycrystalline phase. Lattice parameters (a, c) and volumes of alloy increase with the increasing milling time, whereas the ratio of c/a keep constant. Moreover, the crystallite sizes decrease and the microstrains in the alloys increase first and then decrease with the increase of milling time. The alloys milled for 40 h or 50 h transform partly into amorphous structures. The maximum discharge capacities of alloys decrease with the increase of milling time. The cycle stabilities of the milled alloys are better than those of the as-cast. And they increase with the increasing milling time.  相似文献   

16.
《Journal of power sources》2006,160(1):558-562
Spherical morphology [Ni0.4Co0.2Mn0.4]3O4 materials have been synthesized by ultrasonic spray pyrolysis. The Li[Ni0.4Co0.2Mn0.4]O2 powders were prepared at various pyrolysis temperatures between 500 and 900 °C. The Li[Ni0.4Co0.2Mn0.4]O2 material prepared at a pyrolysis temperature of 600 °C samples are exhibited excellent electrochemical cycling performance and delivered the highest discharge capacity at over 180 mAh g−1 between 2.8 and 4.4 V. The structural, electrochemical, morphological property and thermal stability of the powders were characterized by X-ray diffraction (XRD), galvanostatic charge/discharge testing, scanning electron microscopy (SEM), and differential scanning calorimeter (DSC), respectively.  相似文献   

17.
《Journal of power sources》2006,159(2):1377-1382
We have successfully prepared the layered structure LiNi0.35Co0.3−xCrxMn0.35O2 with various Cr contents by a co-precipitation method. Many measurement methods have been applied to characterize the physical and electrochemical properties of LiNi0.35Co0.3−xCrxMn0.35O2, such as XRD, SEM, BET and electrochemical test. SEM showed that the addition of Cr has obviously changed the morphologies of their particles and increased the size of grains. The specific surface area of LiNi0.35Co0.3−xCrxMn0.35O2 decreases lineally from 4.9 m2 g−1 (x = 0) to 1.8 m2 g−1 (x = 0.1) with the increasing of Cr contents. Moreover, we have found that the Cr doping can greatly improve the density of the powder, which is beneficial to solve the problem of lower electrode density for these layered LiNi0.35Co0.3−xCrxMn0.35O2 cathode materials. Electrochemical test indicated that the cycling performance of LiNi0.35Co0.3−xCrxMn0.35O2 can be significantly improved with the increasing of Cr contents, although the initial discharge capacity of the sample has a little decrease.  相似文献   

18.
《Journal of power sources》2006,160(1):657-661
The cathode-active materials, layered Li[Ni0.333Co0.333Mn0.293Al0.04]O2−zFz (0  z  0.1), were synthesized from a sol–gel precursor at 900 °C in air. The influence of Al–F co-substitution on the structural and electrochemical properties of the as-prepared samples was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical experiments. The results showed that Li[Ni0.333Co0.333Mn0.293Al0.04]O2−zFz has a typical hexagonal structure with a single phase, the particle sizes of the samples tended to increase with increasing fluorine content. It has been found that Li[Ni0.333Co0.333Mn0.293Al0.04]O1.95F0.05 showed an improved cathodic behavior and discharge capacity retention compared to the undoped samples in the voltage range of 3.0–4.3 V. The electrodes prepared from Li[Ni0.333Co0.333Mn0.293Al0.04]O1.95F0.05 delivered an initial discharge capacity of 158 mAh−1 g and an initial coulombic efficiency is 91.3%, and the capacity retention at the 20th cycle was 94.9%. Though the F-doped samples had lower initial capacities, they showed better cycle performances compared with F-free samples. Therefore, this is a promising material for a lithium-ion battery.  相似文献   

19.
《Journal of power sources》2006,154(1):290-297
The crystal structure, hydrogen storage property and electrochemical characteristics of the La0.7Mg0.3Ni3.5  x(Al0.5Mo0.5)x (x = 0–0.8) alloys have been investigated systematically. It can be found that with X-ray powder diffraction and Rietveld analysis the alloys are of multiphase alloy and consisted of impurity LaNi phase and two main crystallographic phases, namely the La(La, Mg)2Ni9 phase and the LaNi5 phase, and the lattice parameter and the cell volume of both the La(La, Mg)2Ni9 phase and the LaNi5 phase increases with increasing Al and Mo content in the alloys. The PC isotherms curves indicate that the hydrogen storage capacity of the alloy first increases and then decreases with increasing x, and the equilibrium pressure decreases with increasing x. The electrochemical measurements show that the maximum discharge capacity first increases from 354.2 (x = 0) to 397.6 mAh g−1 (x = 0.6) and then decreases to 370.4 mAh g−1 (x = 0.8). The high-rate dischargeability of the alloy electrode increases lineally from 55.7% (x = 0) to 73.8% (x = 0.8) at the discharge current density of 1200 mA g−1. Moreover, the exchange current density of the alloy electrodes also increases monotonously with increasing x. The hydrogen diffusion coefficient in the alloy bulk increases with increasing Al and Mo content and thus enhances the low-temperature dischargeability of the alloy electrode.  相似文献   

20.
《Journal of power sources》2006,157(1):488-493
LiNi0.5Mn0.4M0.1O2 (M = Li, Mg, Al, Co) compound was prepared by a solid-state reaction, and its structural, morphological and electrochemical properties were characterized by XRD, SEM, charge–discharge tests and EIS. The impacts of alien ion introduction on the structural, morphological and electrochemical properties of LiNi0.5Mn0.5O2 depend on the dopants. The substitution of Li, Mg, and Co for Mn can enlarge the particle size and improve the crystallinity. LiNi0.5Mn0.4Li0.1O2 and LiNi0.5Mn0.4Co0.1O2 show increased reversible capacities as well as upgraded rate capabilities. LiNi0.5Mn0.4Li0.1O2 exhibits a retentive capacity of about 200 mAh g−1 at 50 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号