首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fillets of fall run coho salmon from each of the Great Lakes were analyzed for pesticides and industrial compounds. PCBs were the dominant contaminant in all samples ranging from trace concentrations in Lake Superior to 1.74 μg/kg in Lake Ontario. Compounds which have been banned or restricted were detected in most samples. These include PCB, DDT, chlordane, dieldrin, toxaphene, endrin, lindane, and heptachlor-epoxide. The herbicide, dacthal, was detected in samples from Lakes Michigan, Huron, and Erie. Comparison of 1984 coho salmon with those collected in 1980 through 1983 indicates that concentrations of PCB and DDT in coho from Lakes Erie and Michigan have declined, following first order loss kinetics. Dieldrin concentrations in Lake Michigan coho have also declined following first order loss kinetics.  相似文献   

2.
Lipid concentrations of Bythotrephes cederstroemi were compared among three Great Lakes, Erie, Huron, and Michigan, in an effort to investigate the phenotypic plasticity in size displayed among the lakes. Four developmental stages were measured in Lakes Erie and Huron and two stages were studied in Lake Michigan. With a gravimetric extraction method, the total lipid concentration range (μg lipid μg dry weight−1, expressed as percent) for Bythotrephes was estimated to be 10–19%. Statistically significant differences were found in lipid concentrations of Bythotrephes among lakes and developmental stages. Lake Erie had significantly higher lipid concentration values than Lake Huron for stages 2 through 4, and had similar values to Lake Michigan for the analyzed stages 1 and 4. The first instar had indistinguishable lipid concentrations among Lakes Erie, Huron,and Michigan. Even though animals from Lake Erie were significantly smaller, the data suggest that they were not less well nourished. We hypothesize that selective mortality imposed by visual predators on larger Bythotrephes and the lack of deep water refuges in Lake Erie has encouraged the smaller size of Bythotrephes found there in comparison to those found in Lakes Huron and Michigan.  相似文献   

3.
Spring and summer open-water crustacean zooplankton communities were examined across all five Laurentian Great Lakes from 1997 to 2016. Spring communities were dominated by calanoid (lakes Superior, Huron and Michigan) or cyclopoid (lakes Erie and Ontario) copepods. Volumetric biomass of summer communities increased along an assumed trophic gradient (Superior, Huron, Michigan, Ontario; eastern, central and western Erie), as did dominance by cyclopoids and cladocerans. Over the time series of the study, summer communities in lakes Michigan, Huron and Ontario shifted towards greater dominance by calanoids and greater similarity with Lake Superior. Trajectories of changes were different; however, reductions in cladocerans accounted for most of the change in lakes Michigan and Huron while reductions in cyclopoids and increases in Leptodiaptomus sicilis were behind the changes in Lake Ontario. Shifts in the predatory cladoceran community in Lake Ontario from Cercopagis pengoi to occasional dominance by Bythotrephes longimanus, a species much more vulnerable to planktivory, as well as the appearance of Daphnia mendotae in a daphnid community previously consisting almost exclusively of the smaller Daphnia retrocurva, suggest impacts of reduced vertebrate predation. In contrast, strong correlations between cladocerans and chlorophyll in lakes Michigan and Huron point to the possible importance of bottom-up forces in those lakes. Large interannual shifts in cladoceran community structure in the central and eastern basins of Lake Erie suggest intense but variable vertebrate predation pressure. The zooplankton communities of lakes Huron, Michigan and Ontario may be approaching a historic community structure represented by Lake Superior.  相似文献   

4.
With the large Diporeia declines in lakes Michigan, Huron, and Ontario, there is concern that a similar decline of Mysis diluviana related to oligotrophication and increased fish predation may occur. Mysis density and biomass were assessed from 2006 to 2016 using samples collected by the Great Lakes National Program Office's biomonitoring program in April and August in all five Great Lakes. Summer densities and biomasses were generally greater than spring values and both increased with bottom depth. There were no significant time trends during these 10–11 years in lakes Ontario, Michigan, or Huron, but there was a significant increase in Lake Superior. Density and biomass were highest in lakes Ontario and Superior, somewhat lower in Lake Michigan, and substantially lower in Lake Huron. A few Mysis were collected in eastern Lake Erie, indicating a small population in the deep basin of that lake. On average, mysids contributed 12–18% (spring-summer, Michigan), 18–14% (spring-summer, Superior), 30–13% (spring-summer, Ontario), and 3% (Huron) of the total open-water crustacean biomass. Size distributions consisted of two peaks, indicating a 2-year life cycle in all four of the deep lakes. Mysis were larger in Lake Ontario than in lakes Michigan, Superior, and Huron. Comparisons with available historic data indicated that mysid densities were higher in the 1960s–1990s (5 times higher in Huron, 2 times higher in Ontario, and around 40% higher in Michigan and Superior) than in 2006–2016.  相似文献   

5.
Adult and prefledged herring gulls were collected from one location each in Lakes Ontario, Erie, Huron, and Superior. Composite samples of liver, kidney, and feather were analyzed for 24 elements and composite samples of bone for 22 elements. After consideration of quality assurance results, concentrations of 16 elements (Al, Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, P, Pb, Sr, Ti, Zn) in liver, kidney, and feather were accepted for presentation while 6 elements were accepted from bone (Ca, Cd, Hg, P, Pb, Zn). Only lead, cadmium, and mercury values were of toxicological interest. Data on other trace elements are presented as baseline values among locations for each tissue and age class. Concentrations of Cd, Pb, and Hg were higher in adults than in prefledged young. Metal levels varied among different tissues with Cd highest in kidney (2.16 μg/g; Hamilton Harbour, Lake Ontario), Pb highest in bone (30.0 μg/g; Double Island, Lake Huron), and Hg highest in feather (6.11 μg/g; Middle Island, Lake Erie). Lead levels in both age classes were generally higher in tissues from the two upper lakes colonies than in samples from the lower lakes. Cadmium and mercury levels did not vary greatly among locations. Levels found are below those associated with metal toxicoses in laboratory studies with other avian species.  相似文献   

6.
We compared Bythotrephes population demographics and dynamics to predator (planktivorous fish) and prey (small-bodied crustacean zooplankton) densities at a site sampled through the growing season in Lakes Michigan, Huron, and Erie. Although seasonal average densities of Bythotrephes were similar across lakes (222/m2 Erie, 247/m2 Huron, 162/m2 Michigan), temporal trends in abundance differed among lakes. In central Lake Erie where Bythotrephes' prey assemblage was dominated by small individuals (60%), where planktivorous fish densities were high (14,317/ha), and where a shallow water column limited availability of a deepwater refuge, the Bythotrephes population was characterized by a small mean body size, large broods with small neonates, allocation of length increases mainly to the spine rather than to the body, and a late summer population decline. By contrast, in Lake Michigan where Bythotrephes' prey assemblage was dominated by large individuals (72%) and planktivorous fish densities were lower (5052/ha), the Bythotrephes population was characterized by a large mean body size (i.e., 37–55% higher than in Erie), small broods with large neonates, nearly all growth in body length occurring between instars 1 and 2, and population persistence into fall. Life-history characteristics in Lake Huron tended to be intermediate to those found in Lakes Michigan and Erie, reflecting lower overall prey and predator densities (1224/ha) relative to the other lakes. Because plasticity in life history can affect interactions with other species, our findings point to the need to understand life-history variation among Great Lakes populations to improve our ability to model the dynamics of these ecosystems.  相似文献   

7.
In this paper new maps are presented of mean circulation in the Great Lakes, employing long-term current observations from about 100 Great Lakes moorings during the 1960s to 1980s. Knowledge of the mean circulation in the Great Lakes is important for ecological and management issues because it provides an indication of transport pathways of nutrients and contaminants on longer time scales. Based on the availability of data, summer circulation patterns in all of the Great Lakes, winter circulation patterns in all of the Great Lakes except Lake Superior, and annual circulation patterns in Lakes Erie, Michigan, and Ontario were derived. Winter currents are generally stronger than summer currents, and, therefore, annual circulation closely resembles winter circulation. Circulation patterns tend to be cyclonic (counterclockwise) in the larger lakes (Lake Huron, Lake Michigan, and Lake Superior) with increased cyclonic circulation in winter. In the smaller lakes (Lake Erie and Lake Ontario), winter circulation is characterized by a two-gyre circulation pattern. Summer circulation in the smaller lakes is different; predominantly cyclonic in Lake Ontario and anticyclonic in Lake Erie.  相似文献   

8.
Benthic communities in the Laurentian Great Lakes have been in a state of flux since the arrival of dreissenid mussels, with the most dramatic changes occurring in population densities of the amphipod Diporeia. In response, the US EPA initiated an annual benthic macroinvertebrate monitoring program on all five Great Lakes in 1997. Although historically the dominant benthic invertebrate in all the lakes, no Diporeia have been found in Lake Erie during the first 13 years of our study, confirming that Diporeia is now effectively absent from that lake. Populations have almost entirely disappeared from our shallow (< 90 m) sites in lakes Ontario, Huron, and Michigan. In Lake Ontario, three of our four deep (> 90 m) sites still supported Diporeia populations in 2009, with densities at those sites ranging between 96 and 198/m2. In Lake Michigan, populations were still found at six of our seven deep sites in 2009, with densities ranging from 57 to 1409/m2. Densities of Diporeia in 2009 at the four deep sites in Lake Huron were somewhat lower than those in Lake Michigan, ranging from 191 to 720/m2. Interannual changes in population size in Lake Huron and Lake Michigan have shown a degree of synchrony across most sites, with periods of rapid decline (1997-2000, 2003-2004) alternating with periods of little change or even increase (2001-2002, 2005-2009). There has been no evidence of directional trends at any sites in Lake Superior, although substantial interannual variability was seen.  相似文献   

9.
Despite increasing recognition of the importance of invertebrates, and specifically crayfish, to nearshore food webs in the Laurentian Great Lakes, past and present ecological studies in the Great Lakes have predominantly focused on fishes. Using data from many sources, we provide a summary of crayfish diversity and distribution throughout the Great Lakes from 1882 to 2008 for 1456 locations where crayfish have been surveyed. Sampling effort was greatest in Lake Michigan, followed by lakes Huron, Erie, Superior, and Ontario. A total of 13 crayfish species occur in the lakes, with Lake Erie having the greatest diversity (n = 11) and Lake Superior having the least (n = 5). Five crayfish species are non-native to one or more lakes. Because Orconectes rusticus was the most widely distributed non-native species and is associated with known negative impacts, we assessed its spread throughout the Great Lakes. Although O. rusticus has been found for over 100 years in Lake Erie, its spread there has been relatively slow compared to that in lakes Michigan and Huron, where it has spread most rapidly since the 1990s and 2000, respectively. O. rusticus has been found in both lakes Superior and Ontario for 22 and 37 years, respectively, and has expanded little in either lake. Our broad spatial and temporal assessment of crayfish diversity and distribution provides a baseline for future nearshore ecological studies, and for future management efforts to restore native crayfish and limit non-native introductions and their impact on food web interactions.  相似文献   

10.
We used Great Lakes hydrologic data and bird monitoring data from the Great Lakes Marsh Monitoring Program from 1995–2002 to: 1) evaluate trends and patterns of annual change in May-July water levels for Lakes Ontario, Erie, and Huron-Michigan, 2) report on trends of relative abundance for birds breeding in Great Lakes coastal marshes, and 3) correlate basin-wide and lake-specific annual indices of bird abundance with Great Lakes water levels. From 1995–2002, average May, June, and July water levels in all lake basins showed some annual variation, but Lakes Erie and Huron-Michigan had identical annual fluctuation patterns and general water level declines. No trend was observed in Lake Ontario water levels over this period. Abundance for five of seven marsh birds in Lake Ontario wetlands showed no temporal trends, whereas abundance of black tern (Chlidonias niger) declined and that of swamp sparrow (Melospiza georgiana) increased from 1995–2002. In contrast, abundances of American coot (Fulica americana), black tern, common moorhen (Gallinula chloropus), least bittern (Ixobrychus exilis), marsh wren (Cistorthorus palustris), pied-billed grebe (Podilymbus podiceps), sora (Porzana carolina), swamp sparrow, and Virginia rail (Rallus limicola) declined within marshes at Lakes Erie and Huron/Michigan from 1995–2002. Annual abundances of several birds we examined showed positive correlations with annual lake level changes in non-regulated Lakes Erie and Huron/Michigan, whereas most birds we examined in Lake Ontario coastal wetlands were not correlated with suppressed water level changes of this lake. Overall, our results suggest that long-term changes and annual water level fluctuations are important abiotic factors affecting abundance of some marsh-dependent birds in Great Lakes coastal marshes. For this reason, wetland bird population monitoring initiatives should consider using methods in sampling protocols, or during data analyses, to account for temporal and spatial components of hydrologic variability that affect wetlands and their avifauna.  相似文献   

11.
A Great Lakes hydrologic response model was used to study the temporal effects of St. Clair River dredging on Lakes St. Clair and Erie water levels and connecting channel flows. The dredging has had a significant effect on Great Lakes water levels since the mid-1980s. Uncompensated dredging permanently lowers the water levels of Lakes Michigan and Huron and causes a transitory rise in the water levels of Lakes St. Clair and Erie. Two hypothetical dredging projects, each equivalent to a 10 cm lowering of Lakes Michigan and Huron, were investigated. This lowering is approximately half the effect of the 7.6 and 8.2 meter dredging projects. In the first case the dredging was assumed to occur over a single year while in the second it was spread over a 2-year period. The dredging resulted in a maximum rise of 6 cm in the downstream levels of Lakes St. Clair and Erie. The corresponding increase in connecting channel flows was about 150 m3s?1. The effects were found to decrease over a 10-year period with a half-life of approximately 3 years. The maximum effects on Lake Erie lagged Lake St. Clair by about 1 year.  相似文献   

12.
Egg quality (size, energy density) is important in determining early survival of birds. Here, we examine temporal (1981–2019) trends in herring gull (Larus argentatus) egg volume and energy density at breeding colonies on all five Laurentian Great Lakes. Temporal declines in egg volume were observed at 4/6 colonies on the upper Great Lakes (Lakes Superior, Michigan, Huron). On the lower Great Lakes (Lakes Erie, Ontario, and connecting channels) egg volume declined at 3/8 colonies and increased at one site. Egg energy density (kJ/g of egg contents) declined at 4/6 upper Great Lakes colonies and at 2/8 lower Great Lakes colonies. All of the upper Great Lakes colonies showed declines in either egg volume or energy density, or both, and these declines were related to dietary markers in eggs (fatty acids, stable nitrogen and carbon isotopes). On the lower Great Lakes and connecting channels, declines in egg volume or energy density were related to dietary endpoints in 3/5 instances. An information-theoretic approach indicated that trends in egg volume were best explained at the colony level while egg energy density trends were best explained by lake of origin. Diet-related declines in herring gull egg quality are likely a reflection of broad-scale ecosystem changes limiting aquatic food availability for gulls, particularly on the upper Great Lakes. These changes may be contributing to population declines in herring gulls and other surface-feeding aquatic birds. This study highlights the value of long-term monitoring of wildlife for identifying ecosystem change.  相似文献   

13.
Previously reported from Lakes Ontario and Michigan, the nonindigenous zooplankter Cercopagis pengoi was found for the first time in western Lake Erie, the Detroit River, and Muskegon Lake, Michigan, during summer 2001. A native of the Ponto-Caspian region, C. pengoi is currently expanding its range in North America. Analysis of mitochondrial gene ND5 sequences confirmed that the Lake Erie haplotype is identical to that reported previously from Lakes Ontario and Michigan and the Finger Lakes, New York. These findings support the hypothesis that C. pengoi's range expansion in the Great Lakes likely resulted from inter-lake transfer of ballast water, rather than from additional introductions from European locations. Pleasure-craft traffic operating between Lake Michigan and Muskegon Lake is likely responsible for this inland transfer of Cercopagis, a trend that likely will increase due to human activities.  相似文献   

14.
Long- and short-term levels and trends of polychlorinated biphenyls (PCBs) in lake trout (Salvelinus namaycush) and walleye (Sander vitreus) from the Canadian waters of the Great Lakes are examined using the bootstrap resampling method in light of the Great Lakes Strategy 2002 (GLS-2002) objective of decrease in concentrations by 25% during 2000–2007. This objective has been set as an indicator of progress toward the long-term goal of all Great Lakes fish being safe to eat without restriction. Lake Superior lake trout and walleye PCB concentrations were almost unchanged between 1990-2006, and the bootstrap analysis suggests that the probability of achieving the GLS-2002 objective is negligible (< 2%). The PCB levels in Lake Huron lake trout and walleye are decreasing; the declines between 2000–2007 are estimated to be 25–35% and 5–30%, respectively. In contrast, Lake Erie walleye concentrations will likely increase by 25–50% between 2000–2007. For Lake Ontario lake trout, achieving the 25% reduction target seems highly probable with a likely decrease of 45–55%; for Lake Ontario walleye, the probability of achieving such a reduction is only 8% with an expected change of −13 to +15%. Although the targeted reduction may not be achieved for walleye from Lakes Superior, Huron, and Ontario, their best projected 2007 PCB levels are below the unlimited fish consumption guideline of 105 ng/g wet weight used by the Ontario Ministry of the Environment. In contrast, although there are high probabilities of achieving the goal for lake trout from Lakes Huron and Ontario, their best projected 2007 PCB levels (160 and 370 ng/g ww, respectively) will continue to result in consumption restrictions. Lake Superior lake trout concentrations may remain unchanged at the current elevated level of 160 ng/g ww. For Lake Erie fish, the projected 2007 concentrations and the increasing trends are both worrisome. Additional measurements beyond 2007 are necessary to confirm these estimates because of the observed periodic oscillations in the concentrations.  相似文献   

15.
Residues of octachlorostyrene (OCS) and related polychlorinated compounds including isomers of heptachloro-, hexachloro-, and pentachlorostyrene; hexachlorobenzene, pentachlorobenzene, isomers of tetrachloro- and trichlorobenzene; and hexachlorobutadiene have been quantitated by multiple-ion-detection gas chromatography-mass spectrometry in Great Lakes fish collected between 1974 and 1980. The results show that the two upper lakes, Superior and Michigan, do not appear to have residues of OCS greater than 5 ng/g, while residues in the lower lakes, Huron, Ontario, and Erie, are as high as 400 ng/g. A selected tributary to Lake Erie has been shown to contain very high levels of all of the chemicals studied which suggests one possible source of chlorostyrenes in the Great Lakes.  相似文献   

16.
Previously determined PCB concentrations in 10 dated sediment cores from Lakes Michigan, Huron, Erie, and Ontario are analyzed by positive matrix factorization in order to find characteristic congener patterns including signs of anaerobic dechlorination. Three or four factors are sufficient to describe the PCB data for each lake. All four lakes are dominated by Aroclors 1248A, 1248G, 1254A, and 1254G. Aroclor 1260 is only a significant factor in Lake Michigan prior to 1975, reflecting in part a usage patterns of heavy chlorinated Aroclors early and less chlorinated Aroclors in the phase-out years in the 1970s. Dated records of factors or sources indicate clear PCB concentration maxima for Lakes Erie (1981) and Ontario(1968), while redistribution of PCBs in the less contaminated Lakes Michigan and Huron has occurred after 1980. Using a single data matrix for all four lakes provides a common basis and possibility to examine low degrees of dechlorination, while individual data matrices for each lake provide more accurate results and better separation of factors. Lakes Ontario, Michigan, and Huron undergo dechlorination via reactions such as 66(24-34) → 25(24-3) and 18(25-2) → 4(2-2) consistent with reactions H' + M, while Lake Erie appears to be dominated by 18(25-2) → 4(2-2) and 53(25-26) → 19(26-2) that are typical for processes M + Q.  相似文献   

17.
The European cladoceran, Bythotrephes cederstroemi (Schödler), recently invaded the Laurentian Great Lakes. Based on recent zooplankton records, it most likely appeared first in 1984 in Lakes Ontario, Erie, and Huron, and in 1985 in Lake Michigan. It has yet to be reported from Lake Superior. This species is a relatively large-bodied predatory form that possesses a long, caudal, latterally barbed spine. B. cederstroemi spines and spine fragments were found in the upper fractions (predominantly 0–4 cm) of 35 sediment cores collected from seven areas of deposition in the eastern basin of Lake Erie. All remains were well preserved and easy to identify. Very few to 0 spines were found in core depths greater than 4 cm suggesting that the invasion of this species has resulted in a new, readily distinguishable time horizon marker.  相似文献   

18.
From 1980 through 1985, waters of the Great Lakes were sequentially sampled for dissolved, paniculate, and total trace elements. Major sampling occurred in 1980 for Lake Huron, in 1981 for Lakes Erie and Michigan, in 1983 for Lake Superior, and in 1985 for Lake Ontario. Great care was taken during collection, storage, and analysis to prevent sample contamination and to document any contamination occurring. Trace elements measured by atomic absorption techniques were silver, aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cobalt, chromium, copper, iron, mercury, lithium, manganese, molybdenum, nickel, lead, antimony, selenium, tin, strontium, vanadium, and zinc. All results were field and laboratory blank corrected. Excluding aluminum, barium, iron, and strontium, concentrations of trace elements in most of the Great Lakes were a few ppb or less, with many elements being below one ppb. Element concentrations were highest in Lakes Erie and Michigan and lowest in Lakes Huron and Superior. All five Great Lakes had more than 50% of their total iron, aluminum, and manganese associated with paniculate matter.  相似文献   

19.
The Laurentian Great Lakes are North America's largest water resource, and include six large water bodies (Lakes Superior, Michigan, Huron, Erie, Ontario, and Georgian Bay), Lake St. Clair, and their connecting channels. Because of the relatively small historical variability in system lake levels, there is a need for realistic climate scenarios to develop and test sensitivity and resilience of the system to extreme high lake levels. This is particularly important during the present high lake level regime that has been in place since the late 1960s. In this analysis, we use the unique climate conditions which resulted in the 1993 Mississippi River flooding as an analog to test the sensitivity of Great Lakes hydrology and water levels to a rare but actual climate event. The climate over the Upper Mississippi River basin was computationally shifted, corresponding to a conceptual shift of the Great Lakes basin 10̊ west and 2̊ south. We applied a system of hydrological models to the daily meteorological time series and determined daily runoff, lake evaporation, and net basin water supplies. The accumulated net basin supplies from May through October 1993 for the 1993 Mississippi River flooding scenario ranged from a 1% decrease for Lake Superior to a large increase for Lake Erie. Water levels for each lake were determined from a hydro-logic routing model of the system. Lakes Michigan, Huron, and Erie were most affected. The simulated rise in Lakes Michigan and Huron water levels far exceeded the historically recorded rise with both lakes either approaching or setting record high levels. This scenario demonstrates that an independent anomalous event, beginning with normal lake levels, could result in record high water levels within a 6- to 9-month period. This has not been demonstrated in the historical record or by other simulation studies.  相似文献   

20.
In recent decades, three important events have likely played a role in changing the water temperature and clarity of the Laurentian Great Lakes: 1) warmer climate, 2) reduced phosphorus loading, and 3) invasion by European Dreissenid mussels. This paper compiled environmental data from government agencies monitoring the middle and lower portions of the Great Lakes basin (lakes Huron, Erie and Ontario) to document changes in aquatic environments between 1968 and 2002. Over this 34-year period, mean annual air temperature increased at an average rate of 0.037 °C/y, resulting in a 1.3 °C increase. Surface water temperature during August has been rising at annual rates of 0.084 °C (Lake Huron) and 0.048 °C (Lake Ontario) resulting in increases of 2.9 °C and 1.6 °C, respectively. In Lake Erie, the trend was also positive, but it was smaller and not significant. Water clarity, measured here by August Secchi depth, increased in all lakes. Secchi depth increased 1.7 m in Lake Huron, 3.1 m in Lake Ontario and 2.4 m in Lake Erie. Prior to the invasion of Dreissenid mussels, increases in Secchi depth were significant (p < 0.05) in lakes Erie and Ontario, suggesting that phosphorus abatement aided water clarity. After Dreissenid mussel invasion, significant increases in Secchi depth were detected in lakes Ontario and Huron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号