首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general method is presented for estimating the loss-of-load probability (LLP) of stand-alone photovoltaic systems. The method was developed by correlating simulation results. The simulations were driven with synthetic radiation sequences having the same statistical significance as available historical data. The method assumes a constant nighttime load and accounts for the distribution and persistence in daily solar radiation data. It is shown that the 10-year average performance of systems having loss-of-load probabilities less than about .01 can vary greatly from one 10-year period to the next and thereby cannot be considered realistic performance estimates of a system during its lifetime.  相似文献   

2.
The energy needs of a typical one-family house in the Thessaloniki area for heating, cooling and domestic hot water production are calculated. The calculations are based on the typical average daily consumption of hot water and on the degree-day method for heating and cooling. The results are finally translated into thermal energy consumption, assuming the typical Greek situation (heating with diesel oil boilers and conventional radiators, cooling with local air-to-air split-type heat pumps and hot water production with electric heaters). The same energy needs are assumed to be covered by a vertical closed loop ground heat exchanger combined with a water-to-water heat pump system with fan-coils for heating and cooling and a thermosyphonic solar system for domestic hot water production. The ground heat exchanger/heat pump system efficiency is determined using data from an existing and continuously monitored similar system installed in the broader area of Thessaloniki. The solar system load coverage is calculated using the f-chart method. The energy consumption of the renewable energy systems is calculated and compared to that of the conventional system. The results prove that significant energy savings can be achieved.  相似文献   

3.
Humidity and indoor moist surrounding affect air cleanliness and protects harmful microorganisms when relative humidity is above 70%. In humid climates, the humidity issues are a major contributor to energy inefficiency in HVAC devices. The use of liquid desiccant dehumidification systems of supply air is a viable alternative to reduce the latent heat load on the HVAC system and improve efficiency. Thermal energy, at a temperature as low as 40–50°C, required for the operation of a liquid desiccant hybrid air conditioner can be efficiently obtained using a flat-plate solar collector. In this work a model of a solar-operated liquid desiccant system (using calcium Chloride) for air dehumidification is developed. The system utilizes packed beds of counter flow between an air stream and a solution of liquid desiccant for air dehumidification and solution regeneration. The desiccant system model is integrated with a solar heat source for performance evaluation at a wide range of recorded ambient conditions for Beirut city. Standard mass and energy balances are performed on the various components of the system and a computer simulation program is developed for the integrated system analysis. The desiccant system of the current study replaces a 3 TR (10.56 kW) vapour compression unit for a typical house as low latent load application, and is part of a hybrid desiccant–vapour compression system for a high latent load application, namely a small restaurant with an estimated cooling load of 11.39 TR (40 kW), including reheat. The relevant parameters of the desiccant system are optimized at peak load, and it is found out that there is an important energy saving if the ratio of the air flow rate in the regenerator to that in the dehumidifier is about 0.3 to 0.4. The COP of the desiccant unit is 0.41 for the house, and 0.45 for the restaurant. The size of the vapor compression unit of the restaurant is reduced to 8 TR when supplemented by a desiccant system. The performance is studied of the desiccant system integrated with a solar collector system and an auxiliary natural gas heater to heat the regenerator. The transient simulation of the solar desiccant system is performed for the entire cooling season. The solar fraction for the house is equal to 0.25, 0.47, and 0.68 for a collector area of 28.72, 57.44, and 86.16 m2, respectively. The solar fraction for the restaurant is 0.19, 0.38, and 0.54, for the same collector areas. The life cycle savings for the house run solely on desiccant system were positive only if natural gas is available at a cheap price. For the restaurant, the economic benefit of the desiccant system is positive, because the need for reheat in the vapor compression system is eliminated. For a gas price of 0.5638 $/kg, the payback period for the restaurant turned out to be immediate if the energy is supplied solely by natural gas, and 11 years if an 86.16 m2 solar collector is implemented to reduce the fuel consumption. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
For an installed centralized heating, ventilating and air conditioning (HVAC) system, appropriate energy management measures would achieve energy conservation targets through the optimal control and operation. The performance optimization of conventional HVAC systems may be handled by operation experience, but it may not cover different optimization scenarios and parameters in response to a variety of load and weather conditions. In this regard, it is common to apply the suitable simulation–optimization technique to model the system then determine the required operation parameters. The particular plant simulation models can be built up by either using the available simulation programs or a system of mathematical expressions. To handle the simulation models, iterations would be involved in the numerical solution methods. Since the gradient information is not easily available due to the complex nature of equations, the traditional gradient-based optimization methods are not applicable for this kind of system models. For the heuristic optimization methods, the continual search is commonly necessary, and the system function call is required for each search. The frequency of simulation function calls would then be a time-determining step, and an efficient optimization method is crucial, in order to find the solution through a number of function calls in a reasonable computational period. In this paper, the robust evolutionary algorithm (REA) is presented to tackle this nature of the HVAC simulation models. REA is based on one of the paradigms of evolutionary algorithm, evolution strategy, which is a stochastic population-based searching technique emphasized on mutation. The REA, which incorporates the Cauchy deterministic mutation, tournament selection and arithmetic recombination, would provide a synergetic effect for optimal search. The REA is effective to cope with the complex simulation models, as well as those represented by explicit mathematical expressions of HVAC engineering optimization problems.  相似文献   

5.
Solar energy is accessible throughout the year in tropical regions. The latest development of absorption chillers has demonstrated that these systems are suitable for effective use of solar energy. The utilisation of solar energy for heat-driven cooling systems has significant advantages. Without a doubt, solar energy represents a clean energy source that is available without any additional fuel cost, and that can be proportionally accessible when the cooling load increases during the middle hours of the day. This study focuses on a single-double-effect absorption chiller machine that was installed in Indonesia. The system is driven by a dual-heat source that combines gas and solar energy. This system is characterised by simulating its performance in various conditions in terms of the cooling water (28–34 °C) and the hot water (75–90 °C) inlet temperatures. The reference operating condition of this system is 239 kW of cooling capacity. The mathematical model is validated and shows a good agreement with experimental data. In the operative range considered, simulation results yield a coefficient of performance between 1.4 and 3.3, and a gas reduction ratio from 7 to 58% when compared to a double-effect absorption chiller driven by gas. Based on the simulation results, this system is expected to have a good potential for widespread use in tropical Asia regions.  相似文献   

6.
In Turkey, four degree-day regions stated in the standards are used in building heating energy load calculations. Deficiencies about the degree-day regions are mentioned in some other studies. In this paper, a different climatic zone approach suggested by International Energy Agency (IEA) regarding both heating and cooling degree-day data, derived from Typical Meteorological Year (TMY) data, is used. Results are presented graphically and compared with the current regulations. The second degree-day region, according to Turkish Standard (Thermal Insulation Requirements for Buildings (TS 825)), is divided into four climatic zones with the method proposed by IEA. Difference between monthly outdoor temperature values of the second degree-day region and cities in this region is up to 6.4 °C which is high. The conclusion of this study is that the climatic variables should be evaluated in detail, and a new climatic zone study should be done regarding both heating and cooling loads. This will imply new building energy load calculations for all cities in Turkey.  相似文献   

7.
Electric energy storage systems are used considerably in industries and daily applications. The demand for batteries with high energy content has increased because of their use in hybrid vehicles. Lead–acid batteries have wide applications because of their advantages such as high safety factor and low cost of production. The major shortcoming of lead–acid batteries is low energy content and high dimension and weight. Nowadays, a common method to increase the energy content of lead–acid battery is the experimental method with trial and error, which is time consuming and expensive. In this paper, non‐isothermal one‐dimensional numerical simulation of lead–acid battery with finite volume method is performed. In addition, a cell with higher energy content and lower thickness is designed by using particle swarm optimization algorithm based on developed simulation code. The results of single objective optimization show that an optimal battery that has 27.6% higher energy can be made with the same cell dimension. The results also show that an optimum cell battery can be obtained with a decrease of 24% in thickness while keeping the energy the same. Moreover, a multi‐objective optimization algorithm is utilized to find Pareto optimal solutions while considering the energy content and thickness objectives simultaneously. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Solar combisystems are relatively complex systems with many different components and operational parameters. Before the beginning of IEA-SHC Task 26 (“solar combisystems”), no method was available with which they could be compared. The well known “f-chart” method was introduced by Duffie and Beckman already in the seventies, but was only useful for dimensioning generic combisystems, with a defined hydraulic scheme. It didn’t give a method to compare different designs.The objective of this work was to develop a simple tool for characterizing the performance of these systems. The method used was to analyse the comprehensive simulation results of Task 26 and to look for relationships between the key external factors of climate and load, and the system performance. The result is a new and simple methodology for characterization of solar combisystems, called the fractional solar consumption (FSC) method. FSC is a dimensionless quantity, which takes simultaneously into account the climate, the space heating and domestic hot water loads, the collector size, its orientation and tilt angle, but which does not depend on the studied system design.The study shows that fractional energy savings, with and without parasitic energy included, can be expressed as a quadratic function of FSC. The relationship was shown to be valid for a wide range of conditions, but to be limited for certain parameters such as collector orientation and hot water load. The method has been used to create a nomogram and the computer design tool CombiSun.  相似文献   

9.
The power management strategy (PMS) plays an important role in the optimum design and efficient utilization of hybrid energy systems. The power available from hybrid systems and the overall lifetime of system components are highly affected by PMS. This paper presents a novel method for the determination of the optimum PMS of hybrid energy systems including various generators and storage units. The PMS optimization is integrated with the sizing procedure of the hybrid system. The method is tested on a system with several widely used generators in off-grid systems, including wind turbines, PV panels, fuel cells, electrolyzers, hydrogen tanks, batteries, and diesel generators. The aim of the optimization problem is to simultaneously minimize the overall cost of the system, unmet load, and fuel emission considering the uncertainties associated with renewable energy sources (RES). These uncertainties are modeled by using various possible scenarios for wind speed and solar irradiation based on Weibull and Beta probability distribution functions (PDF), respectively. The differential evolution algorithm (DEA) accompanied with fuzzy technique is used to handle the mixed-integer nonlinear multi-objective optimization problem. The optimum solution, including design parameters of system components and the monthly PMS parameters adapting climatic changes during a year, are obtained. Considering operating limitations of system devices, the parameters characterize the priority and share of each storage component for serving the deficit energy or storing surplus energy both resulted from the mismatch of power between load and generation. In order to have efficient power exploitation from RES, the optimum monthly tilt angles of PV panels and the optimum tower height for wind turbines are calculated. Numerical results are compared with the results of optimal sizing assuming pre-defined PMS without using the proposed power management optimization method. The comparative results present the efficacy and capability of the proposed method for hybrid energy systems.  相似文献   

10.
The performance prediction of Solar Integrated Collector–Storage System (ICS) is determined in terms of generalized dimensionless grouped parameters. These dimensionless parameters are primarily a combination of physical characteristics representing thermal performance curves for solar ICS systems and include information readily available to a designer pertaining to dimensions, thermal characteristics and operating conditions. The inter-relation between these is summarised as a nomogram and helps in predicting the system performance graphically for a particular locality or it may be deduced from it by simple hand calculation. This method does not require a detailed knowledge of system parameters for predicting system performance, and an advantage of this method is that short-term performance data is used to predict long-term performance and solar fraction. A simulation model was developed using a transient one-dimensional analysis for a solar ICS system. Time-dependent heat transfer coefficients and thermophysical properties were taken in the present simulation. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
电力负荷的时变性对电力系统实时动态仿真分析具有较大影响。为了提高实时动态仿真分析的精度,基于不敏卡尔曼粒子滤波提出一种动态电力负荷在线建模方法。针对一种指数型动态负荷模型结构,利用不敏卡尔曼粒子滤波算法对其参数进行在线辨识。通过这种方式,可以根据实时采集的量测数据在线修正动态负荷模型的参数,从而追踪电力负荷的实时变化特性。分别利用动态仿真平台和实际电力系统的量测数据进行仿真分析,结果表明了所提方法具有较高的在线参数辨识精度,并能对实际电力负荷的实时变化特性进行准确的描述。  相似文献   

12.
采用序贯蒙特卡罗法对含有储能设备的风/柴孤立发电系统进行充裕度评估。针对样例系统,在发电系统强迫停运率、储能设备容量以及峰值负荷取值不同的情况下,计算发电系统的充裕度指标;研究储能设备对孤立发电系统充裕度的影响,并对产生影响的原因进行分析。结果表明,加入储能设备可改善发电系统的充裕度,提高系统的供电可靠性水平,减少风力发电机组输出功率波动对系统的影响。分析方法和结果可为储能设备在风力发电系统中的应用和储能设备容量的选择等方面提供参考。  相似文献   

13.
When load variables, such as window and insulation types, are included in the economic optimization of a solar space heating system, the over-all cost is lower than that resulting from optimization of collection area for a fixed load (as by FCHART [1] and SOLCOST [2]). In this paper an algorithm is derived for choosing insulation levels, as well as solar collection area, so as to minimize the over-all cost of constructing and heating a building. The general algorithm is applicable with any solar performance prediction method, and with any economic criterion where the “cost” is a linear function of collection area and of auxiliary energy consumption. A specific algorithm is also derived for active solar systems using the Relative Areas method of performance prediction [3] and a conventional present worth life cycle cost analysis. The degree-day model is used for the load calculations.  相似文献   

14.
A numerical method was developed for optimising solar–hydrogen energy system to supply renewable energy for typical household connected with the grid. The considered case study involved household located in Diyala Governorate, Iraq. The solar–hydrogen energy system was designed to meet the desired electrical load and increase the renewable energy fraction using optimum fuel cell capacity. The simulation process was conducted by MATLAB based on the experimental data for electrical load, solar radiation and ambient temperature at a 1-min time-step resolution. Results demonstrated that the optimum fuel cell capacity was approximately 2.25 kW at 1.8 kW photovoltaic power system based on the average of the daily energy consumption of 6.8 kWh. The yearly renewable energy fraction increased from 31.82% to 95.82% due to the integration of the photovoltaic system with a 2.25 kW fuel cell used as a robust energy storage unit. In addition, the energy supply, which is the economic aspect for the optimum system, levelised electricity cost by approximately $0.195/kWh. The obtained results showed that the proposed numerical analysis methodology offers a distinctive property that can be used effectively to optimise hybrid renewable energy systems.  相似文献   

15.
The monthly-average auxiliary energy requirement of a building with a collector-storage (Trombe) wall is estimated using upper and lower theoretical limits to system performance. These two limits on the building auxiliary energy requirements result from considering the building and collector-storage wall to have either zero thermal capacity or infinite thermal capacity. With zero thermal capacity, all solar gain in excess of the load, on an instantaneous basis, is not useful and must be dumped. With infinite thermal capacity, the house is able to store any gain in excess of the instantaneous load and use it at some later time. Auxiliary energy use by real systems will fall between these two theoretical bounds. An empirical correlation is presented for the fraction of the load met by the collector-storage wall, F, for systems with finite capacity. The correlation is based on the solar radiation statistic, utilizability. The correlation is compared to yearly TRNSYS simulation results for a wide variety of system types. The root-mean-square difference between F found from the un-utilizability method and from TRNSYS simulations is less than 4 per cent. One advantage of this method over other simplified design methods is that this method covers a much larger range of design parameters.  相似文献   

16.
《Journal of power sources》2006,161(1):707-722
Recent research and development of alternative energy sources have shown excellent potential as a form of contribution to conventional power generation systems. In order to meet sustained load demands during varying natural conditions, different energy sources and converters need to be integrated with each other for extended usage of alternative energy. The paper focuses on the combination of wind, fuel cell (FC) and ultra-capacitor (UC) systems for sustained power generation. As the wind turbine output power varies with the wind speed: an FC system with a UC bank can be integrated with the wind turbine to ensure that the system performs under all conditions. We propose herein a dynamic model, design and simulation of a wind/FC/UC hybrid power generation system with power flow controllers. In the proposed system, when the wind speed is sufficient, the wind turbine can meet the load demand while feeding the electrolyzer. If the available power from the wind turbine cannot satisfy the load demand, the FC system can meet the excess power demand, while the UC can meet the load demand above the maximum power available from the FC system for short durations. Furthermore, this system can tolerate the rapid changes in wind speed and suppress the effects of these fluctuations on the equipment side voltage in a novel topology.  相似文献   

17.
《Energy Conversion and Management》1999,40(15-16):1617-1626
The application of a steam-injected gas turbine cycle to a district heating system is analyzed from the thermodynamic and economic viewpoints. A commercially available software was used to predict the part load behavior of the plant. Good agreement of the simulation results and the measured data was found. Cost-optimal operation is achieved at the maximum allowable firing temperature, if a degree of freedom with respect to power production exists. The electricity–credit/fuel–cost ratio was identified as the most significant variable influencing the economic performance of the plant.  相似文献   

18.
Hsueh-Hsien Chang 《Energy》2011,36(1):181-190
By integrating neural networks (NNs) with turn-on transient energy analysis, this work attempts to recognize demand load, including the buyers’ load on the power systems and the internal load on the cogeneration systems, thereby increasing the recognition accuracy in a non-intrusive energy management (NIEM) system. Analysis results reveal that an NIEM system and a new method that is based on genetic algorithms (GA) can effectively manage energy demand in an optimal economic dispatch for cogeneration systems with multiple cogenerators, which generate power for buyers. Furthermore, the global optimum of economic dispatch under typical environmental and operating constraints of cogeneration systems is found using the proposed approach, which is based on genetic algorithms. Moreover, the use of the proposed GA-based method for economic dispatch can substantially reduce computational time, fuel cost, power cost and air pollution.  相似文献   

19.
The world is becoming increasingly interested in renewable energy including geothermal energy. The utilization of geothermal systems is currently low because geothermal systems and existing source systems are used independently, but the supply rate of a geothermal system is increasing. Therefore, suggesting efficient operation plans and evaluations of the energy consumption and efficiency of a geothermal system is needed. This paper reports the results of a field study and survey of the present applications and operation conditions of a geothermal system. In addition, this paper proposes an efficient operation strategy for a geothermal system and compares this operation strategy with an existing operation strategy through simulation. The problems of existing operation condition were found out through a field study, and alternatives were proposed. The improvements were evaluated using the transient systems simulation program. And it would be possible for the reduction of the energy consumption through the comparative analysis of equipment efficiency and energy consumption. The result of analyzing the proposed combination header method through simulations compared with existing operation conditions can increase the use of geothermal systems, but the combined cooling and hot water of a geothermal heat pump and existing thermal source system reduced the efficiency of the heat pump. As a result of simulation on individual load‐sharing method, efficiency of geothermal system is increasing compared with the combination header method. This method was especially made to separate geothermal system's water loop and existing thermal source system's water loop. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
As population grows and energy consumption increases, generation, transmission, and energy distribution costs also increase. Sudden and unpredicted demand increase at peak periods might lead to failure and even damage the power grid. This is a challenge for stability and reliability of the grid. Peak load shaving is considered as an effective approach while transition from peak load periods. In this paper, peak load shaving is modeled mathematically through storing energy on demand side and solved using optimization method. Using the results obtained from solving the optimization problem, a simple effective algorithm is proposed for peak load shaving via real‐time scheduling of distributed battery storage systems without complicated calculations. All characteristics required for systemic design of peak load shaving for residential, commercial, and industrial loads are presented. This method can be used in the presence of photovoltaic arrays or other renewable or nonrenewable distributed energy resources simultaneously, and it can be adapted to different conditions and demands. Here, real measured data of a residential state, an office building with photovoltaics, a hotel, and a small office are used for simulation, and GAMS is used for analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号