首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Five German hard coals of 6–36 wt% volatile matter yield (maf) were pyrolysed at pressures up to 10 MPa, using two different apparatuses, which mainly differ in the heating rates. One consists of a thermobalance where a coal sample of ≈ 1.5 g is heated at a rate of 3 K min ?1 under a gas flow of 3 I min?1. The other apparatus is constructed for rapid heating (102?103 K s?1) of a small sample of ≈10 mg of finely-ground coal distributed as a layer between the folded halfs of a stainless-steel screen, heated by an electric current. The product gas composition was determined by quantitatively analysing for H2, CH4, C2H4, C2H6, CO, CO2 and H2O. The amounts of tar and char were measured by weighing. The heating rate, pressure and gas atmosphere were varied. Under an inert gas atmosphere, high heating rates result in slightly higher yields of liquid products, e.g. tar. The yields of light hydrocarbon gases remain the same. With increasing pressure, the thermal cracking of tar is intensified resulting in high yields of char and light hydrocarbon gases. Under H2, pyrolysis is influenced strongly at elevated pressure. Additional amounts of highly aromatic products are released by hydrogenation of the coal itself, particularly between 500 and 700°C. This reaction is less effective at higher heating rates because of the shorter residence time and diffusion problems of H2. The yield of light gaseous compounds CH4 and C2H6 increases markedly under either heating condition owing to gasification of the reactive char.  相似文献   

2.
A wire mesh reactor was used to investigate the devolatilization process of coal particle during entrained flow gasification. Coal from Indonesia East Kalimantan mine, which has high moisture and high volatile matter, was chosen as a sample. Experiments were carried out at the heating rate of 1,000 °C/s and isothermal condition was kept at peak temperature under atmospheric pressure. The char, tar and gas formation characteristics of the coal as well as the composition of the gas components at peak temperatures were determined. The experimental results showed that devolatilization process terminated when temperature reached above 1,100 °C. Most of tar was formed at about 800 °C, while the rate of tar formation decreased gradually as the temperature increased. CH4 was observed at temperatures above 600 °C, whereas H2 was detected above 1,000 °C. The amount of formed gases such as H2, CO, CH4 and C n H m increased as the temperature increased. From the characteristics of devolatilization with residence time, it was concluded that devolatilization terminated within about 0.7 second when the temperature reached 1,000 °C. As the operating temperature in an entrained flow gasifier is higher than ash melting temperature, it is expected that the devolatilization time of high volatile coal should be less than one second in an entrained flow gasifier.  相似文献   

3.
The catalytic activity of Ni/Al2O3, Ni/CeO2, and Ni/Al2O3-CeO2 catalysts of different compositions were investigated over biomass pyrolysis process. Catalysts were prepared using co-precipitation method with various compositions of nickel and support materials. Surface characterizations of the materials were evaluated using XRD, SEM, and BET surface area analysis with N2 adsorption isotherm. XRD analysis reveals the presence of Al2O3, CeO2, NiO, and NiAl2O4 phases in the catalysts. Paper samples used for daily writing purposes were chosen as biomass source in pyrolysis. TGA experiment was performed on biomass with and without presence of catalysts, which resulted in the decrease of initial degradation temperature of paper biomass with the influence of catalysts. In a fixed-bed reactor, untreated and catalyst mixed biomasses were pyrolyzed up to 800 °C, with a residence time of 15 min. The non-condensable gases were collected through gas bags every after 100 °C and also at 5, 10, and 15 min residence time at 800 °C, which were analyzed using TCD-GC equipment. Comparative distributions of solid, liquid and gaseous components were made. Results indicated diminished amount of tar production in presence of catalysts. 30 wt% Ni/CeO2 catalyst yielded least amount of tar product. The least amount of CO was produced over the same catalyst. According to gas analysis result, 30 wt% Ni doped alumina sample produced maximum amount of H2 production with 43.5 vol% at 800 °C (15 min residence time).  相似文献   

4.
C.G. Soni  A.K. Dalai  T. Pugsley 《Fuel》2009,88(5):920-925
Gasification of meat and bone meal followed by thermal cracking of tar was carried out at atmospheric pressure using a two-stage fixed bed reaction system in series. The first stage was used for the gasification and the second stage was used for thermal cracking of tar. In this work, the effects of temperature (650-850 °C) of both stages, equivalence ratio (actual O2 supply/stoichiometric O2 required for complete combustion) (0.15-0.3) and the second stage packed bed height (40-100 mm) on the product (char, tar and gas) yield and gas (H2, CO, CO2, CH4, C2H4, C2H6, C3H6, C3H8) composition were studied. It was observed that the two-stage process increased hydrogen production from 7.3 to 22.3 vol.% (N2 free basis) and gas yield from 30.8 to 54.6 wt.% compared to single stage. Temperature and equivalence ratio had significant effects on the hydrogen production and product distribution. It was observed that higher gasification (850 °C) and cracking (850 °C) reaction temperatures were favorable for higher gas yield of 52.2 wt.% at packed bed height of 60 mm and equivalence ratio of 0.2. The residence time of tar and product gases was varied by varying the packed bed height of second stage. The tar yield decreased from 18.6 wt.% to 14.2 wt.% and that of gas increased from 50.6 wt.% to 54.6 wt.% by changing the packed bed height of second stage from 40 to 100 mm while the gross heating value (GHV) of the product gas remained almost constant (16.2-16.5 MJ/m3).  相似文献   

5.
Six thermoplastics, which represent more than two-thirds of all polymer production in western Europe, were pyrolysed in a static batch reactor in a nitrogen atmosphere. These were high density polyethylene (HDPE), low density polyethylene (LDPE), polystyrene (PS), polypropylene (PP), polyethylene terephthalate (PET) and polyvinyl chloride (PVC). The heating rate used was 25°C min−1 to a final temperature of 700°C. These six plastics were then mixed together to simulate the plastic fraction of municipal solid waste found in Europe. The effect of mixing on the product yield and composition was examined. The results showed that the polymers studied did not react independently, but some interaction between samples was observed. The product yield for the mixture of plastics at 700°C was 9·63% gas, 75·11% oil, 2·87% char and 2·31% HCl. The gases identified were H2, CH4, C2H4, C2H6, C3H6, C3H8, C4H8, C4H10, CO2 and CO. The composition of oils were determined using Fourier Transform infra-red spectrometry and size exclusion chromatography. Analysis showed the presence mainly of aliphatic compounds with small amounts of aromatic compounds. ©1997 SCI  相似文献   

6.
Lignins are generally used as a low-grade fuel in the pulp and paper industry. In this work, pyrolysis of Alcell and Kraft lignins obtained from Alcell process and Westvaco, respectively, was carried out in a fixed-bed reactor to produce hydrogen and gas with medium heating value. The effects of carrier gas (helium) flow rate (13.4–33 ml/min/g of lignin), heating rate (5–15°C/min) and temperature (350–800°C) on the lignin conversion, product composition, and gas yield have been studied. The gaseous products mainly consisted of H2, CO, CO2, CH4 and C2+. The carrier gas flow rate did not have any significant effect on the conversion. However, at 800°C and at a constant heating rate of 15°C/min with increase in carrier gas flow rate from 13.4 to 33 ml/min/g of lignin, the volume of product gas decreased from 820 to 736 ml/g for Kraft and from 820 to 762 ml/g for Alcell lignin and the production of hydrogen increased from 43 to 66 mol% for Kraft lignin and from 31 to 46 mol% for Alcell lignin. At a lower carrier gas flow rate of 13.4 ml/min/g of lignin, the gas had a maximum heating value of 437 Btu/scf. At this flow rate and at 800°C, with increase in heating rate from 5 to 15°C/min both lignin conversion and hydrogen production increased from 56 to 65 wt.% and 24 to 31 mol%, respectively, for Alcell lignin. With decrease in temperature from 800°C to 350°C, the conversion of Alcell and Kraft lignins were decreased from 65 to 28 wt.% and from 57 to 25 wt.%, respectively. Also, with decrease in temperature, production of hydrogen was decreased. Maximum heating value of gas (491 Btu/scf) was obtained at 450°C for Alcell lignin.  相似文献   

7.
Ralph J. Tyler 《Fuel》1980,59(4):218-226
The devolatilization behaviour of ten bituminous coals was investigated under rapid heating conditions using a small-scale fluidized-bed pyrolyser. The pyrolyser operated continuously, coal particles being injected at a rate of 1–3 g h?1 directly into a heated bed of sand fluidized by nitrogen. Yields of tar, C1–C3 hydrocarbon gases, and total volatile-matter and an agglomeration index are reported for all coals. Maximum tar yields were obtained at about 600 °C and were always substantially higher than those from the Gray-King assay. Total volatile-matter yields were also substantially higher than the proximate analysis values. The maximum tar yields appear to be directly proportional to the coal atomic HC ratio. The elemental analysis of the tar is strongly dependent on pyrolysis temperature. The tar atomic HC ratio is proportional to that of the parent coal. The effect on the devolatilization behaviour of two coals produced by changes in the pyrolyser atmosphere and the nature of the fluidized-bed material were also investigated. Substituting an atmosphere of hydrogen, helium, carbon dioxide or steam for nitrogen, has no effect on tar yield and, with one exception, little effect on the hydrocarbon gas yields. In the presence of hydrogen the yield of methane was increased at temperatures above 600 °C. Tar yields were significantly reduced on substituting petroleum coke for sand as the fluid-bed material. A fluidized bed of active char virtually eliminated the tar yield.  相似文献   

8.
Wen Li  Na Wang  Baoqing Li 《Fuel》2003,82(5):569-573
A lignite added with 0.2% MoS2 as catalyst was pyrolyzed under H2 using multi-stage heating method (MHyPy) which means holding a suitable time near the peak temperature. The product distribution and detailed analysis of products were performed. The results show that the tar yield increased to 63.9% during MHyPy compared with that of 51.8% in traditional hydropyrolysis (HyPy), while the gas yield decreased to a half. This suggests the effective utilization of hydrogen during MHyPy. The light aromatics in the tar from MHyPy increased remarkably 42, 37.8 and 115.4% for BTX, PCX and naphthalenes, respectively. Biphenyls were also observed in the tar from MHyPy, which indicated the effective hydrogenation occurs during catalytic MHyPy. The rich pore structure of the char from MHyPy hints its high reactivity in the subsequent conversion process such as gasification and combustion.  相似文献   

9.
《Fuel》1987,66(5):697-701
Effects of carbonization conditions on char reactivity in steam gasification were evaluated by a gravimetric method, using 12 coals varying widely in rank, type and source. The carbonization variables examined were
  • 1.(1) heating rate (5–420K min−1) in steam atmosphere;
  • 2.(2) gaseous atmosphere (N2,H2,H2O andCO2);
  • 3.(3) incomplete devolatilization in N2 (final temperature 200–800 °C);
  • 4.(4) quenching of incompletely devolatilized char; and
  • 5.(5) complete carbonization (900–1400 °C).
The char reactivity to steam depended on the kind of coal but was almost independent of the carbonization conditions of heating rate, gaseous atmosphere and quenching at temperatures below ≈ 1000 °C. Carbonization above 1100 °C reduced the char reactivity, for example by a factor of 7 to 10 at 1300 °C compared with 900–1000 °C, depending on the parent coal. The char deactivation brought about by increasing carbonization temperature could be correlated with a decrease in the micropore volume of the char, unless graphitization was significant.  相似文献   

10.
Pyrolysis of peat obtained from Yeniça?a, Bolu, Turkey was conducted in a fixed-bed tube furnace under various conditions, and variations in the structure of the char, tar and gas products were examined. The chars produced were studied by proximate and ultimate analyses. The maximum tar yield of 20.41% was obtained at a heating rate of 20 °C/min, a temperature of 450 °C, a sweeping gas flow rate of 100 ml/min and a 0.5–2.0 mm size range. The chemical composition of the tar was examined by elemental analysis, FTIR spectroscopy, 1H-NMR spectroscopy and column chromatography. The chemical composition of the tar with dense aliphatic structure was established to be CH1.22O0.25N0.02. The composition of the gases obtained at a heating rate of 20 °C/min for the 0.5–2.0 mm size range was examined by gas chromatography.  相似文献   

11.
Ralph J. Tyler 《Fuel》1979,58(9):680-686
The devolatilization behaviour of finely-ground (< 0.2 mm) Loy Yang brown coal was investigated under rapid heating conditions using a small-scale fluidized-bed pyrolyser. The pyrolyser operated continuously, coal being fed at rates of 1–3 g/h directly into a bed of sand fluidized by nitrogen. Particle heating rates probably exceeded 104 °C/s. The yields of tar, C1-C3 hydrocarbons and total volatile matter are reported for a pyrolyser-temperature range of 435 to 900 °C. A maximum tar yield of 23% w/w (dry ash-free coal), 60% more than the Fischer assay, was obtained at 580 °C. Yields of C1-C3 hydrocarbons increased with increasing temperature, reaching 8% at 900 °C. Elemental analyses showed that the composition of the tar and char products was strongly dependent on pyrolysis temperature. The effects on the devolatilization behaviour of the coal produced by the moisture associated with the coal, by hydrogen, and by the replacement of the sand by a fluidized bed of petroleum coke were investigated.  相似文献   

12.
A study on pyrolysis of palm oil wastes in a countercurrent fixed bed was carried out, aiming to characterize the hydrogen rich gas products in view of enhanced energy recycling. The effects of temperature, residence time and catalyst adding on the yields and distribution of hydrogen rich gas products were investigated. The main gas species generated, as identified by Micro-GC, were H2, CO, CO2, CH4 and trace amounts of C2H4 and C2H6. With temperature increasing from 500 °C to 900 °C, the total gas yield was enhanced greatly and reached the maximum value (∼ 70 wt.%, on the raw biomass sample basis) at 900 °C with big portions of H2 (33.49 vol.%) and CO (41.33 vol.%). Residence time showed a significant influence on the upgrading of H2 and CO2 yields. The optimum residence time (9 s) was found to get a higher H2 yield (10.40 g/kg (daf)). The effect of adding chemicals (Ni, γ-Al2O3, Fe2O3 and La/Al2O3, etc.) on gas product yield was investigated and adding Ni showed the greatest catalytic effect with the maximum H2 yield achieved at 29.78 g/kg (daf).  相似文献   

13.
Seven lignins from different sources were pyrolysed (i) isothermally in vacuum over the temperature range 300–1300 °C and (ii) at a constant heating rate of 30 °C min?1 and a pressure of 0.1 MPa over the temperature range 150–900 °C. The mass fraction of each product—char, tar and gas species—and the elemental composition of the char and the tar were determined for the flash pyrolysis experiments. The evolution rates of the gas species and the tar versus the dynamic temperature of pyrolysis were determined for the constant heating rate pyrolysis experiments. Although the amount of each product species varied from lignin to lignin, the evolution rates were insensitive to the lignin source and the extraction process. To model the data, modifications were made to a recently developed model of coal pyrolysis. The model proved to be successful in simulating both the data from vacuum flash pyrolysis and constant heating rate pyrolysis of Iotech lignin.  相似文献   

14.
Treatment of plastic waste by gasification in fluidized bed with air using dolomite as tar cracking catalyst has been studied. The gasifier has a 1 m high bed zone (diameter of 9.2 cm) followed by a 1 m high freeboard (diameter of 15.4 cm). The feedstock is composed of blends of plastic waste with pine wood sawdust and coal at flow rates of 1–4 kg/h. Operating variables studied were gasifier bed temperature (750–880 °C), equivalence ratio (0.30–0.46), feedstock composition and the influence of secondary air insertion in freeboard. Product distribution includes gas and char yields, gas composition (H2, CO, CO2, CH4, light hydrocarbons), heating value and tar content in the flue gas. As a result, a gas with a medium hydrogen content (up to 15% dry basis) and low tar content (less than 0.5 g/mn3) is obtained.  相似文献   

15.
A preliminary study of the pyrolysis of grain screenings (wheat) has been carried out using a batch pyrolysis unit operating at atmospheric pressure. Grain screenings are the materials removed mechanically from grains (wheat, rapeseed, barley, etc.) by cleaning or separating equipment in grain elevators. Reaction conditions were varied to determine the effect of these changes on the final product (tar, gas, and char). The reaction variables manipulated included temperature (600–800°C), nitrogen carrier gas velocity, and potassium carbonate catalyst. It was found that the yields of ethylene were higher than those of ethane. These hydrocarbons were accompanied by smaller but significant yields of hydrogen and C4 to C6 hydrocarbons. The grain screenings impregnated with 15 wt% potassium carbonate catalyst gave higher synthesis gas yields with a H2/CO mole ratio up to 4.1. With the experimental set up used in the present study, the mass balances achieved were low and ranged between 65 and 77% of the weight of the grain screenings used.  相似文献   

16.
To reveal the effect mechanism of CO atmosphere on coal pyrolysis, a study on raw and demineralized lignite was carried out in a horizontal tube furnace under N2 and CO/N2 atmosphere. CO had a negligible effect on the char yield at low temperatures, whereas it enhances the char yield at temperatures higher than 550 °C. The release of tar was higher in the presence of CO above 450 °C because of more free radicals, which reduced low‐temperature crosslinking, and higher selectivity of hydroxyl groups to phenols in the CO‐containing atmosphere. The yields of CO2 and H2 increased, water and CO yields decreased under CO/N2 atmosphere. Light hydrocarbon gases were not affected by changing the reaction atmosphere. The difference between product yields from raw and demineralized coal confirmed that the catalysis of inherent minerals had a great catalytic effect on the water‐gas shift reaction and Boudouard reaction.  相似文献   

17.
The pyrolysis of wood was carried out in an Entrained Flow Reactor at high temperature (650 to 950 °C) and under rapid heating conditions (> 103 K s− 1). The influence of the diameter and initial moisture of the particle, reactor temperature, residence time and the nature of the gaseous atmosphere on the composition of the gaseous products has been characterised. Particle size, between 80-125 and 160-200 μm, did not show any impact. Pyrolysis and tar cracking essentially happen in very short time period: less than 0.6 s; the products yields are only slightly modified after 0.6 s in the short residence times (several seconds) of our experiments. Higher temperatures improve hydrogen yield in the gaseous product while CO yield decreases. Under nitrogen atmosphere, after 2 s at 950 °C, 76% (daf) of the mass of wood is recovered as gases: CO, CO2, H2, CH4, C2H2, C2H4 and H2O. Tests performed under steam partial pressure showed that hydrogen production is slightly enhanced.  相似文献   

18.
Steam gasification of biomass can generate hydrogen-rich, medium heating value gas. We investigated pyrolysis and char reaction behavior during biomass gasification in detail to clarify the effect of steam presence. Rice straw was gasified in a laboratory scale, batch-type gasification reactor. Time-series data for the yields and compositions of gas, tar and char were examined under inert and steam atmosphere at the temperature range of 873-1173 K. Obtained experimental results were categorized into those of pyrolysis stage and char reaction stage. At the pyrolysis stage, low H2, CO and aromatic tar yields were observed under steam atmosphere while total tar yield increased by steam. This result can be interpreted as the dominant, but incomplete steam reforming reactions of primary tar under steam atmosphere. During the char reaction stage, only H2 and CO2 were detected, which were originated from carbonization of char and char gasification with steam (C + H2O→CO + H2). It implies the catalytic effect of char on the water-gas shift reaction. Acceleration of char carbonization by steam was implied by faster hydrogen loss from solid residue.  相似文献   

19.
The thermal reaction of trichloroethylene (TCE: C2HCl3) has been conducted in an isothermal tubular flow reactor at 1 atm total pressure in order to investigate characteristics of chlorinated hydrocarbons decomposition and pyrolytic reaction pathways for formation of product under excess hydrogen reaction environment. The reactions were studied over the temperature range 650 to 900 °C with reaction times of 0.3–2.0 s. A constant feed molar ratio C2HCl3: H2 of 4: 96 was maintained through the whole experiments. Complete decay (99%) of the parent reagent, C2HCl3 was observed at temperature near 800 °C with 1 s reaction time. The maximum concentration (28%) of C2H2Cl2 as the primary intermediate product was found at temperature 700 °C where up to 68% decay of C2HCl3 occurred. The C2H3Cl as highest concentration (19%) of secondary products was detected at 750 °C. The one less chlorinated methane than parent increased with temperature rise subsequently. The number of qualitative and qualitative chlorinated products decreased with increasing temperature. HCl and dechlorinated hydrocarbons such as C2H4, C2H6, CH4 and C2H2 were the final products at above 800 °C. The almost 95% carbon material balance was given over a wide range of temperatures, and trace amounts of C6H6, C4H6 and C2HCl were observed above 800 °C. The decay of reactant, C2HCl3 and the hydrodechlorination of intermediate products, resulted from H atom cyclic chain reaction via abstraction and addition replacement reactions. The important pyrolytic reaction pathways to describe the important features of reagent decay, intermediate product distributions and carbon mass balances, based upon thermochemical and kinetic principles, were suggested. The main reaction pathways for formation of major products along with preliminary activation energies and rate constants were given.  相似文献   

20.
The performances of 1 g h?1 and 20 kg h?1 flash pyrolysers are compared for three Australian coals: Loy Yang brown coal (Victoria), Liddell bituminous coal (New South Wales), and Millmerran sub-bituminous coal (Queensland). The two reactors gave comparable yields of tar, char and C1–C3 hydrocarbon gases over a range of operating conditions for each particular coal. The yield of total volatile matter from Millmerran coal was similar from both reactors, as were the compositions of chars from Loy Yang coal and tars from the Liddell and Millmerran coals. For Millmerran coal, the yields of tar, C1–C3 gases and volatiles from the large reactor below 650 °C, were slightly lower than for the small reactor, possibly owing to a shorter retention time of Millmerran coal particles in the large-scale reactor. At a temperature near 600 °C tar yields were independent of tar concentration in the effluent gas, over a range 0.0025–0.1 kg m?3 for Liddell coal, 0.005–0.26 kg m?3 for Millmerran coal and 0.0045–0.09 kg m?3 for Loy Yang coal. The tar yields from Millmerran and Liddell coals at 600 °C in the large reactor, correlate directly with the atomic HC ratio of the parent coal, in the same manner as that found for a wider range of bituminous coals in the small-scale reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号