首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一种基于LTCC技术的S波段宽边耦合线耦合器的实现方法。该耦合器由带状线平行放置而成,从而实现更强的耦合度,并实现了耦合器的小型化。通过ADS电路仿真以及HFSS软件三维建模设计,耦合器的加工测试结果与电磁仿真结果相匹配,耦合器的中心频率为3.1GHz,带宽为900 MHz,直通端与耦合端插入损耗均优于3.25dB,隔离端衰减优于26dB,直通端与耦合端的相位差为±90°,尺寸仅为5.4mm×4mm×2.2mm。  相似文献   

2.
提出了一款工作在Ka波段的6位开关延迟线组件,基于低温共烧陶瓷(LTCC)工艺,采用曲折带状线结构设计,实现了组件的小型化,同时显著减小了延迟线组件的色散。组件尺寸为84mm×47mm×15mm,可产生最大63λ的延迟量。测试结果表明,该6位延迟线组件在34.1~34.3GHz的工作频带内,输入输出驻波小于2,相位线性度小于20°,插入损耗小于36dB,带内损耗波动小于3dB。  相似文献   

3.
4.
借助低温陶瓷共烧(LTCC)技术和三维叠层结构的设计方法,设计了有限传输零点的带通滤波器(BPF),然后通过匹配网络设计了一种S波段双工器,利用HFSS仿真软件对其对其参数进行了仿真优化。该双工器尺寸为18.4mm×15.8mm×0.6mm,在2.06GHz和2.21GHz处的插损小于-3.72dB,在1.87GHz和2.32GHz处衰减大于-55dB,在1.51GHz到2.52GHz处隔离度小于-12dB,达到了双工器设计指标要求和小型化的目的。  相似文献   

5.
研究了一种C波段LTCC无通孔微型Lange耦合器,其结构紧凑,尺寸小。LTCC叠层技术是实现高性能、高可靠、微型化微波元件的主流技术之一,尤其是在提高电路集成度方面。Lange耦合器由于其特殊的结构使得其可以实现宽频带、高性能。设计、制作了一种中心频率为4GHz的宽带3dB Lange耦合器,尺寸仅为7.0mm×2.2mm×1.4mm。在2.0~6.0GHz频带内测试结果如下:插入损耗<0.3dB,反射损耗<21dB,隔离>27dB,相位平衡<90±3°,最大承受功率<40W(连续波)。测试与仿真结果较吻合,验证了研究结果的一致性。  相似文献   

6.
平行耦合线定向耦合器的设计   总被引:1,自引:0,他引:1  
阐述了平行耦合线定向耦合器的工作原理和设计过程.根据耦合微带线和耦合带状线的主要特征,分别设计了频率为2.5GHz的平行耦合微带线定向耦合器和平行耦合带状线定向耦合器.根据给定耦合器的技术指标,确定耦合器的类型、结构.利用ADS软件环境设计了平行耦合线定向耦合器的电路模型,并对定向耦合器的S参数进行仿真、优化,已达到预期的设计要求.由仿真结果可以看出,在频带范围内,耦合带状线定向耦合器的耦合性能优于耦合微带线定向耦合器.  相似文献   

7.
谢廉忠  符鹏 《现代雷达》2008,30(2):100-102
低温共烧陶瓷(LTCC)技术是实现机载、星载、舰载相控阵雷达小型化、轻量化、高性能、高可靠、低成本的有效手段。文中论述了LTCC技术在微波集成器件应用中所具有的技术优势,并介绍了用于微波组件的LTCC 3dB耦合器的构成、关键制造工艺技术以及性能参数等,为LTCC技术在微波集成器件中的应用进行了有益的探索。  相似文献   

8.
高勇  黄智  高宁 《微波学报》2012,28(4):65-68
对各种类型的阶梯阻抗谐振器进行了分析和比较,λg/2型SIR谐振器最适合LTCC滤波器的设计;同时分析了耦合窗结构原理,多层LTCC滤波器适合采用这种耦合结构,可以大大缩小滤波器的体积;本文详细介绍通过多层孔径弱耦合、小型化发夹谐振器结构的LTCC多层窄带耦合窗滤波器设计方法,并进行该结构两种滤波器实物版图加工,实测结果与仿真结果比较吻合。该结构窄带滤波器结构小巧新颖,易于集成在小型化微波多芯片组件中使用。  相似文献   

9.
设计了一款工作于L波段的LTCC滤波器。利用LTCC多层技术,设计双层耦合带状线谐振腔,采用电感反馈的三谐振腔结构,减小滤波器体积,设计时通过增加零点,提高滤波器带外阻带性能。在2.4~2.5GHz频段范围内,实测插入损耗小于1.2dB,在1.7~1.9GHz、7.2~7.5GHz带外频段内,衰减大于20dB,与仿真结果吻合较好。滤波器最终体积为1.6mm×0.8mm×0.6mm。  相似文献   

10.
高勇  高宁 《现代雷达》2011,(8):58-61
小型化和多通路设计是现代微波电路和系统的发展方向。MCM和LTCC技术是实现这些研究方向的有效途径和手段。文中对采用低温共烧陶瓷(LTCC)技术设计实现的X波段4个带状线小型化滤波器进行了介绍,将高频仿真软件HFSS设计优化的滤波器版图进行了LTCC制板和测试。对测试数据进行分析,给出了采用LTCC技术设计实现微波小型化滤波器的一种解决方案。  相似文献   

11.
本文主要介绍了定向耦合器的基本模型、分类和技术指标;分析了常见耦合器结构的特点;最后着重讨论了基于LTCC工艺的单节带状线定向耦合器的设计方法,包括设计的理论基础、LTCC工艺、设计与仿真方法、设计与优化的指导准则;最后,设计实例的测试结果表明了该方法的有效性。  相似文献   

12.
LTCC(低温共烧陶瓷)技术是无源元件集成的主流技术之一。本文介绍了一种基于LTCC工艺的定向耦合器的设计原理和方法。该定向耦合器是一种采用侧边耦合的传输线型耦合器。在电路结构上,通过把两个弱耦合器进行对称串联的方式满足了5dB紧耦合的要求,并使方向性有了较大改善。在研制过程中,利用ADS软件对电路进行了仿真和优化,采用LTCC过孔互联结构,避免使用键合线,从而提高了可靠性。  相似文献   

13.
本文先介绍了分支线正交定向耦合器的概念与工作原理;然后根据该原理在ADS2009软件下设计仿真了工作在Ka波段的微带线定向耦合器,并对Ka波段的耦合器模型进行了改良,使之实际面积缩小的同时能达到原有的性能。  相似文献   

14.
采用LTCC技术的X波段接收前端MCM设计   总被引:2,自引:0,他引:2  
高勇  王绍东 《现代雷达》2008,30(5):106-108
多芯片组件(MCM)是目前实现机载雷达接收前端小型化的最有效途径。文中对X波段全频段多功能接收前端的组成、采用LTCC技术的MCM设计实现及实物测试数据进行了叙述和分析,给出了采用LTCC技术的X波段多功能接收前端MCM设计的一种解决方案。该MCM接收前端的测试指标满足雷达通用接收前端要求,为雷达小型化多功能接收前端的设计提供了参考依据。  相似文献   

15.
S波段小型Lange耦合器的应用设计   总被引:1,自引:0,他引:1       下载免费PDF全文
李勇  王江涛 《微波学报》2011,27(5):60-63
Lange耦合器在雷达设备中应用广泛,雷达技术的飞速发展对Lange耦合器的体积质量提出了非常苛刻的要求。通过Ansoft Designer仿真发现在设计中使用高介电常数的介质,使耦合器的中心频率适当偏离实际工作频率,改变耦合段结构,都可以既不影响耦合器性能又明显地减小Lange耦合器的尺寸。实际制作了两种S波段的薄膜工艺小型Lange耦合器,尺寸分别为2.25mm×11.9mm2、.25mm×8.9mm,其中尺寸较小的耦合器中心频率与实际工作频率相比较高。两种耦合器的实测结果表明,所设计的耦合器一方面在尺寸上达到了小型化的目的,另一方面性能完全满足实际工程应用的需要。  相似文献   

16.
姚瑶  张萧  胡江  延波 《微波学报》2012,28(S1):266-269
首次采用低温共烧陶瓷(LTCC)技术的设计出频率在34.2 GHz 时相位延迟为32λg 和 1λg 的带状线延迟线。 延迟线具有低插损、低色散的特性。由于LTCC 独特的工艺特点,实现结构的小型化和结构紧凑性。文中设计的32λg 和 1λg 延迟线的尺寸分别为7 × 5 × 3 mm3和2 × 1.5 × 3 mm3。最终仿真结果也证明该方案的优越性:对于32λg 延迟线,在 34.2GHz 时插入损耗为3.39dB,在34.1-34.3GHz 频段内插损优于5.068dB,驻波小于2.1;1λg 延迟线,在中心频率34.2GHz 插入损耗为0.316dB, 34.1-34.3GHz 频段上优于0.317dB,驻波小于1.25。  相似文献   

17.
应用LTCC多层耦合带状线谐振器和交叉耦合传输零点原理,在改进的三维梳状带通滤波器结构中引入交叉耦合,增强非相邻谐振级间的交叉耦合;在2、4谐振级间引入Z字形导体层,通过调节Z字形控制传输零点位置;同时适当调节加载电容大小,有效减小了滤波器体积,实现了高次谐波抑制、边带陡峭和通带内线性相位.采用低温共烧陶瓷(LTCC)技术设计制作了中心频率为3GHz,通带为200MHz的微型带通滤波器.实验和仿真结果表明,该滤波器的中心频率插入损耗小于2.6dB,阻带抑制高于40dB,边带陡峭,尺寸仅为4.8mm×4.2mm× 1.5mm.成品率高达85%.  相似文献   

18.
设计了一种小型化的低温共烧陶瓷(LTCC)滤波器,该滤波器电路由电容耦合的二阶谐振腔组成。设计了该滤波器的三维多层结构,利用组件间的耦合效应,产生一个传输零点,提高了滤波器性能。仿真结果表明,该滤波器中心频率为3.41GHz,相对带宽为5.9%(200MHz),体积为3.8mm×2.8mm×0.8mm,在S波段的通讯,雷达等射频系统有广泛的应用。  相似文献   

19.
基于GaAs 0.1 μm pHEMT工艺,设计了一款工作在0.1~0.14 THz的小型化定向耦合器芯片。采用加载开路枝节线的方式提高传输线的等效电长度,进而实现电路结构的小型化;利用曲折线的方式构成开路枝节线,使得耦合器的物理尺寸进一步缩小。采用电磁仿真软件仿真表明,所设计的小型化定向耦合芯片中心工作频率为0.12 THz,相对带宽大于30%,带内的回波损耗高于20 dB,带内插入损耗小于1 dB,耦合度为(10±0.5) dB,带内隔离度大于20 dB,直通端口与耦合端口相位差为90°±3.5°,其尺寸为0.21 mm×0.19 mm(不计Pad尺寸)。  相似文献   

20.
针对现有雷达高频接收组件尺寸大、集成度不高的情况,采用低温共烧陶瓷(LTCC)多层基板、单片微波集成电路(MMIC)芯片和微组装技术,设计和实现了C波段LTCC高频前端模块。该模块采用二次混频方案,包含限幅器、放大器、滤波器、衰减器、混频器等;其中主要器件用MMIC芯片实现,滤波器埋置在LTCC多层基板中实现,极大减小了模块的尺寸,模块最终尺寸为64 mm×20 mm×1.1 mm,比现有的接收组件尺寸减小了50%。经测试,该LTCC高频前端模块的增益大于40 dB,带内平坦度小于2 dB,噪声系数小于5 dB,镜像抑制度优于51 dB。可将高频前端模块应用于雷达高频接收组件中,从而减小组件尺寸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号