首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some interesting features have been observed when 1-methoxy-2-propanol was studied in direct liquid fuel cells. Air flow rate ranging from 180 to 920 ml/min had no effect on performance, but the performance increased largely when the cell temperature was increased from 40, to 60, and then to 80 °C. The open circuit voltage of the cell was around 0.70 V, which was 0.08–0.33 V higher than that when methanol was used. At low air flow rates, 1-methoxy-2-propanol performed much better than methanol in the entire current density region at 60 and 80 °C. At high air flow rates, methanol performed better than 1-methoxy-2-propanol at current densities higher than 100 mA/cm2, but the latter performed better than the former at current densities less than ca. 50 mA/cm2. The crossover current density of 1.0 M 1-methoxy-2-propanol through a Nafion® 112 membrane was estimated electrochemically, and it was 25.6, 60.8 and 96.0 mA/cm2 at cell temperatures of 40, 60, and 80 °C, respectively, measured at 0.90 V. These numbers were much smaller than those of methanol that, e.g. had a crossover current density of 232 mA/cm2 at 0.9 V and 60 °C. One problem with using 1-methoxy-2-propanol as a fuel was that the cell anode seemed to be seriously poisoned by the oxidation intermediates at anode overpotentials lower than ca. 0.2 V.  相似文献   

2.
《Journal of power sources》2006,155(2):111-117
Sulfonated poly(phthalazinone ether ketone) (sPPEK) with a degree of sulfonation of 1.23 was mixed with silica nanoparticles to form hybrid materials for using as proton exchange membranes. The nanoparticles were found homogeneously dispersed in the polymer matrix and a high 30 phr (parts per hundred resin) loading of silica nanoparticles can be achieved. The hybrid membranes exhibited improved swelling behavior, thermal stability, and mechanical properties. The methanol crossover behavior of the membrane was also depressed such that these membranes are suitable for a high methanol concentration in feed (3 M) in cell test. The membrane with 5 phr silica nanoparticles showed an open cell potential of 0.6 V and an optimum power density of 52.9 mW cm−2 at a current density of 264.6 mA cm−2, which is better than the performance of the pristine sPPEK membrane and Nafion® 117.  相似文献   

3.
The performance of formic acid fuel oxidation on a solid PEM fuel cell at 60 °C is reported. We find that formic acid is an excellent fuel for a fuel cell. A model cell, using a proprietary anode catalyst produced currents up to 134 mA/cm2 and power outputs up to 48.8 mW/cm2. Open circuit potentials (OCPs) are about 0.72 V. The fuel cell runs successfully over formic acid concentrations between 5 and 20 M with little crossover or degradation in performance. The anodic polarization potential of formic acid is approximately 0.1 V lower than that for methanol on a standard Pt/Ru catalyst. These results show that formic acid fuel cells are attractive alternatives for small portable fuel cell applications.  相似文献   

4.
《Journal of power sources》2006,161(1):282-289
A novel MEA is fabricated to improve the performance of air-breathing direct methanol fuel cells. A diffusion barrier on the anode side is designed to control methanol transport to the anode catalyst layer and thus suppressing the methanol crossover. A catalyst coated membrane with a hydrophobic gas diffusion layer on the cathode side is employed to improve the oxygen mass transport. It is observed that the maximum power density of the advanced DMFC with 2 M methanol solution achieves 65 mW cm−2 at 60 °C. The value is nearly two times more than that of a commercial MEA. At 40 °C, the power densities operating with 1 and 2 M methanol solutions are over 20 mW cm−2 with a cell potential at 0.3 V.  相似文献   

5.
《Journal of power sources》2006,160(1):97-104
The performance of a single-cell direct methanol fuel cell (DMFC) using carbon nanotube-supported Pt–Ru (Pt–Ru/CNT) as an anode catalyst has been investigated. In this study, the Pt–Ru/CNT electrocatalyst was successfully synthesized using a modified polyol approach with a controlled composition very close to 20 wt.%Pt–10 wt.%Ru, and the anode was prepared by coating Pt–Ru/CNT electrocatalyst on a wet-proof carbon cloth substrate with a metal loading of about 4 mg cm−2. A commercial gas diffusion electrode (GDE) with a platinum black loading of 4 mg cm−2 obtained from E-TEK was employed as the cathode. The membrane electrode assembly (MEA) was fabricated using Nafion® 117 membrane and the single-cell DMFC was assembled with graphite endplates as current collectors. Experiments were carried out at moderate low temperatures using 1 M CH3OH aqueous solution and pure oxygen as reactants. Excellent cell performance was observed. The tested cell significantly outperformed a comparison cell using a commercial anode coated with carbon-supported Pt–Ru (Pt–Ru/C) electrocatalyst of similar composition and loading. High conductivity of carbon nanotube, good catalyst morphology and suitable catalyst composition of the prepared Pt–Ru/CNT electrocatalyst are considered to be some of the key factors leading to enhanced cell performance.  相似文献   

6.
《Journal of power sources》2005,145(2):282-285
The performance of an alkaline fuel cell (AFC) was studied at different electrolyte concentrations and temperatures for the direct feeding of methanol, ethanol and sodium borohydride as fuels. Potassium hydroxide is used as the electrolyte in the alkaline fuel cell. The anode was prepared by using Pt black, carbon paper and Nafion dispersion. Nickel mesh was used as the current collector. A standard cathode made of manganese dioxide/carbon paper/Ni-mesh/Teflon dispersion (Electro-Chem-Technic, UK) was used for testing the fuel cell performance. The experimental results showed that the current density increases with increase in KOH concentration. Maximum current densities of 300, 270 and 360 A m−2 were obtained for methanol, ethanol and sodium borohydride as fuel respectively with 3 M KOH electrolyte at 25 °C. The cell performance decreases with further increase in the KOH concentration. The current density of the alkaline fuel cell increases with increase in temperature for all the three fuels. The increase in current density with temperature is not as high as expected for sodium borohydride. These results are explained based on an electrochemical phenomenon and different associated losses.  相似文献   

7.
《Journal of power sources》2006,160(1):334-339
Methanol permeability measurements and direct methanol fuel cell tests were performed at room temperature with different commercially available or recast Nafion® membranes and sulfonated polyimide (SPI) membranes. Power densities as high as 20 mW cm−2 could be obtained with Nafion® 115. However, in order to meet the technological requirements for portable applications, thinner membranes have to be considered. As the MeOH crossover increases greatly (from (7 to 20) × 10−8 mol s−1 cm−2) while Nafion® membranes thickness decreases, non-perfluorinated polymers having high IEC are promising candidates for DMFC working at room temperature. The development catalysts tolerant to methanol is also relevant for this application. In spite of the low permeability to MeOH of SPI membranes, the obtained electrical performance with E-TEK electrodes based MEAs was lower than that obtained with Nafion® membranes. No significant increase of performances was neither evidenced by using homemade PtCr(7:3)/C and PtRu(4:1)/C catalysts instead of E-TEK electrodes with recast Nafion® based MEAs. However, MEAs composed with thin SPI membranes (50 μm) and homemade PtCr/C catalysts gave very promising results (18 mW cm−2). Based on experimental observations, a speculative explanation of this result is given.  相似文献   

8.
The oxygen reduction reaction at a manganese dioxide cathode in alkaline medium is studied using cyclic voltammetry and by measuring volume of oxygen consumed at the cathode. The performance of the manganese dioxide cathode is also determined in the presence of fuel and an alkali mixture with a standard Pt/Ni anode in a flowing alkaline-electrolyte fuel cell. The fuels tested are methanol, ethanol and sodium borohydride (1 M), while 3 M KOH is used as the electrolyte. The performance of the fuel cell is measured in terms of open-circuit voltage and current–potential characteristics. A single peak in the cyclic voltammogram suggests that a four-electron pathway mechanism prevails during oxygen reduction. This is substantiated by calculating the number of electrons involved per molecule of oxygen that are reacted at the MnO2 cathode from the oxygen consumption data for different fuels. The results show that the power density of the fuel cell increases with increase in MnO2 loading to a certain limit but then decreases with further loading. The maximum power density is obtained at 3 mg cm−2 of MnO2 for each of the three different fuels.  相似文献   

9.
《Journal of power sources》2006,158(2):1344-1347
A stability test on direct methanol fuel cells (DMFCs) was carried out at current densities of 100, 150, and 200 mA cm−2. Each test lasted for 145 h in the three cases. X-ray diffraction, energy dispersive spectroscopy, and scanning electron microscopy were used for analysis of the membrane electrode assemblies (MEAs). The maximum power densities were 93.9, 79.9, and 55.1% of the initial value after operation at 100, 150, and 200 mA cm−2, respectively. A PtRu black catalyst with an original particle size of 3.3 nm was used for the anode electrode. For the MEAs operated at 100, 150, and 200 mA cm−2, the PtRu particle sizes increased from the original size to 3.4, 3.9, and 4.2 nm, respectively, while a Pt black catalyst used for the cathode electrode did not change in size. Dissolution of the Ru was observed, and the ratio of (Pt:Ru) changed from (53:47) in the case of the fresh MEA, to (54:46), (56:44), and (73:27) for the MEAs after operation at 100, 150, and 200 mA cm−2, respectively. The equivalent weight of the NafionTM membrane increased from a weight of 1264 g for a fresh membrane, to a weight of 1322, 1500, and 1945 g with the increases in operating current density to 100, 150, and 200 mA cm−2, respectively.  相似文献   

10.
The interface between the electrolyte and electrode catalyst plays an important role in determining the performance of proton-exchange membrane fuel cells (PEMFCs) since the electrochemical reactions take place at the interface in contact with the reactant gases. To enhance catalyst activity by enlarging the interfacial area, the surface of a Nafion® membrane is roughened by Ar+ ion beam bombardment that does not change the chemical structure of the membrane, as confirmed by FT-IR spectra. Among the membranes treated with ion dose densities of 0, 1015, 1016, 5 × 1016 and 1017 ions cm−2 at ion energy of 1 keV, the membrane treated at ion dose density of 5 × 1016 ions cm−2 exhibits the highest performance. Using the untreated and the treated membrane with 5 × 1016 ions cm−2, the effects of platinum loading on cell performance are examined with Pt loadings of 01, 0.2, 0.3, 0.4 and 0.55 mg cm−2. Except for a Pt loading of 0.55 mg cm−2 where mass transport limits the cell performance, the single cell using a treated membrane gives a higher performance than that using an untreated membrane. This implies that the cell performance can be improved and the Pt loading can be reduced by ion beam bombardment.  相似文献   

11.
《Journal of power sources》2006,160(1):353-358
The performances of the proton exchange membrane fuel cell (PEMFC), direct formic acid fuel cell (DFAFC) and direct methanol fuel cell (DMFC) with sulfonated poly(ether sulfone) membrane are reported. Pt/C was coated on the membrane directly to fabricate a MEA for PEMFC operation. A single cell test was carried out using H2/air as the fuel and oxidant. A current density of 730 mA cm−2 at 0.60 V was obtained at 70 °C. Pt–Ru (anode) and Pt (cathode) were coated on the membrane for DMFC operations. It produced 83 mW cm−2 maximum power density. The sulfonated poly(ether sulfone) membrane was also used for DFAFC operation under several different conditions. It showed good cell performances for several different kinds of polymer electrolyte fuel cell applications.  相似文献   

12.
《Journal of power sources》2006,162(2):1073-1076
A 28-W direct borohydride–hydrogen peroxide fuel-cell stack operating at 25 °C is reported for contemporary portable applications. The fuel cell operates with the peak power-density of ca. 50 mW cm−2 at 1 V. This performance is superior to the anticipated power-density of 9 mW cm−2 for a methanol–hydrogen peroxide fuel cell. Taking the fuel efficiency of the sodium borohydride–hydrogen peroxide fuel cell as 24.5%, its specific energy is ca. 2 kWh kg−1. High power-densities can be achieved in the sodium borohydride system because of its ability to provide a high concentration of reactants to the fuel cell.  相似文献   

13.
《Journal of power sources》2005,145(2):101-107
Pure layered phosphates of varying crystalline phases and crystallinity and composites of gradient layers of zirconium phosphate in Nafion 117-membranes have been prepared. The proton conductivity and, in case of the composites, also the dynamic mechanical properties of these materials were measured under different conditions of temperature and humidity. Membrane-electrode assemblies with low platinum catalyst loading of 0.4 mg cm−2 Pt at the cathode and 1.9 mg cm−2 Pt–Ru at the anode were examined in a direct methanol fuel cell (DMFC) at medium temperatures (130 °C). The conductivity of the layered zirconium phosphates is superior to the titanium phosphates and increases with decreasing crystallite size. The electrical performance of the composites in a DMFC-environment is slightly decreased as compared to the unmodified membrane but taking the reduced methanol crossover into account, higher efficiencies can be reached with the zirconium phosphate modified membrane. Furthermore, the mechanical properties are significantly improved by the presence of the inorganic compound.  相似文献   

14.
《Journal of power sources》2005,140(1):103-110
In the present work, the changes of Nafion®-115 membrane porosity in the presence of ethanol aqueous solutions of different concentrations were determined by weighing vacuum-dried and ethanol solution-equilibrated membranes. It was found that membrane porosity increases as ethanol concentration increases. Membrane electrode assemblies (MEAs) have been prepared by following both the conventional and the decal transfer method. The ethanol crossover through these two MEAs was electrochemically quantified by a voltammetric method. A 10 h stability test of direct ethanol fuel cell (DEFC) at a current density of 50 mA cm−2 was carried out. It was found that the electrode preparation procedure has an obvious effect on ethanol crossover and direct ethanol fuel cell's performance and stability. The single DEFC test results showed that about 15 and 34% of the original peak power density was lost after 10 h of life test for the MEAs prepared by the decal transfer method and the conventional method, respectively. Electrochemical impedance spectrum (EIS) results of the MEAs showed that, in the case of the membrane electrode assembly prepared by the following decal transfer method, the internal cell resistance was almost the same, 0.236 Ω cm2 before the life test and 0.239 Ω cm2 after 10 h of life test, while the respective values for the membrane electrode assembly by the conventional method are 0.289 and 0.435 Ω cm2. It is supposed that the improved cell performance with MEA by the decal transfer method could be resorted to both a better contact between the catalyst layer and the electrolyte membrane and higher catalyst utilization. Furthermore, based on the experimental results, the increased internal cell resistance and the degraded single DEFC performance could be attributed to the delamination of the catalyst layer from the electrolyte membrane.  相似文献   

15.
《Journal of power sources》2005,145(2):262-265
Proton-conducting solid electrolytes composed of gadolinium-doped barium cerate (BCG) or gadolinium and praseodymium-doped barium cerate (BCGP) were tested in an intermediate-temperature fuel cell in which hydrogen or ammonia was directly fed. At 700 °C, BCG electrolytes with porous platinum electrodes showed essentially no loss in performance in pure hydrogen. Under direct ammonia at 700 °C, power densities were only slightly lower compared to pure hydrogen feed, yielding an optimal value of 25 mW cm−2 at a current density of 50 mA cm−2. This marginal difference can be attributed to a lower partial pressure of hydrogen caused by the production of nitrogen when ammonia is decomposed at the anode.A comparative test using BCGP electrolyte showed that the doubly doped barium cerate electrolyte performed better than BCG electrolyte. Overall fuel cell performance characteristics were enhanced by approximately 40% under either hydrogen or ammonia fuels using BCGP electrolyte. At 700 °C using direct ammonia feed, power density reached 35 mW cm−2 at a current density of approximately 75 mA cm−2. Minimal loss of performance was noted over approximately 100 h on-stream in alternating hydrogen/ammonia fuels.  相似文献   

16.
《Journal of power sources》2006,156(2):369-374
The three-dimensional (3D) transient model presented in part I is used to study the overshoot and undershoot behavior observed in a PEMFC during operation with fixed normal stoichiometic flow rates of hydrogen and air for a 1.0 V s−1 change in the load. In contrast to the behavior with excess flow shown in part I, the predictions show second-order responses for both decreases and increases in the load. That is, there is current overshoot when the load cell is decreased from 0.7 V to 0.5 V and there is current undershoot when the cell voltage is increased from 0.5 V to 0.7 V. The simulation of a 10 cm2 reactive area with a serpentine flow path is used to explain this behavior in terms of the reacting gas concentrations, the flow through the gas diffusion media, the movement of water through the MEA by electro-osmotic and back diffusion forces, and the variation in the distributions of current density. The operating conditions correspond to 101 kPa, 70 °C cell temperature, anode and cathode dew-points and stoichiometries of 65 °C and 57 °C and 1.45 and 2.42 at an initial operating voltage of 0.7 V and current density of 0.33 A cm−2. The fixed flow rates correspond to stoichiometries of 1.05 and 1.73 at 0.5 V for the 0.46 A cm−2 predicted current density. The predictions illustrate regions where the MEA may alternate between wet and dry conditions and this may be useful to explain stability and durability of the MEA during transient operation.  相似文献   

17.
《Journal of power sources》2005,145(2):477-484
We propose a new direct methanol fuel cell with a zigzag-folded membrane electrode assembly. This fuel cell is formed by a membrane, which is made up of anode and cathode electrodes on a zigzag-folded sheet, separated by insulation film and current collectors. Individual anodes, cathodes and membranes form a unit cell, which is connected to the adjacent unit cell. The fuel cell can achieve high output voltage through easy in-series connection. Since it is not necessary to connect electrodes, as in the manner of conventional bipolar plates, there is no increase in fabrication cost and no degradation in reliability. The fuel feeds for the anode and cathode are achieved through methanol and air feeds on each electrode, which do not require electricity to run a pump or blower. The experimental cells were formed with an active area of 16 cm × 2 cm on membrane-folded cells. Filter papers with slits were inserted between anodes to improve their methanol supply. A power density of 3 mW cm−2 was obtained at a methanol concentration of 2 M at ambient temperature. The cell power was affected by the slit area on cathode.  相似文献   

18.
A multi-phase, multi-component, thermal and transient model is applied to simulate the operation of a passive direct methanol fuel cell and optimize the design. The model takes into consideration the thermal effects and the variation of methanol concentration at the feeding reservoir above the fuel cell. Polarization and constant current cases are numerically simulated and compared with experiments for liquid feed concentration, membrane thickness, water management and air management systems. Parameters considered when determining an optimal design include power density, fuel utilization and energy efficiencies and water balance coefficients. An optimal liquid feed concentration is determined to be 2.0 mol kg?1, which achieved a maximum power density of 21 mW cm?2 and a fuel utilization efficiency of 63.0%. An optimal design of a cell uses a thick membrane (Nafion 117) to reduce methanol crossover and two additional cathode GDLs to improve the water balance coefficient and efficiency of the cell. This combination results in a power density of 23.8 mW cm?2 and a water balance coefficient of ?1.71. An air filter may also be added to improve the efficiency and water balance coefficient of the cell, however, a small loss in power density will also occur. Using an Oil Sorbents air filter the water balance coefficient is increased to ?0.85, the fuel utilization efficiency is improved by 27.35% and the maximum power density decreased to 21.6 mW cm?2.  相似文献   

19.
《Journal of power sources》2006,157(1):318-324
The electrooxidation of methoxy methane (dimethyl ether) was studied at different Pt-based electrocatalysts in a standard three-electrode electrochemical cell. It was shown that alloying platinum with ruthenium or tin leads to shift the onset of the oxidation wave towards lower potentials. On the other hand, the maximum current density achieved was lower with a bimetallic catalyst compared to that obtained with a Pt catalyst. The direct oxidation of dimethoxy methane in a fuel cell was carried out with Pt/C, PtRu/C and PtSn/C catalysts. When Pt/C catalyst is used in the anode, it was shown that the pressure of the fuel and the temperature of the cell played important roles to enhance the fuel cell electrical performance. An increase of the pressure from 1 to 3 bar leads to multiply by two times the maximum achieved power density. An increase of the temperature from 90 to 110 °C has the same effect. When PtRu/C catalyst is used in the anode, it was shown that the electrical performance of the cell was only a little bit enhanced. The maximum power density only increased from 50 to 60 mW cm−2 at 110 °C using a Pt/C anode and a Pt0.8Ru0.2/C anode, respectively. But, the maximum power density is achieved at lower current densities, i.e. higher cell voltages. The addition of ruthenium to platinum has other effect: it introduces a large potential drop at relatively low current densities. With the Pt0.5Ru0.5/C anode, it has not been possible to applied current densities higher than 20 mA cm−2 under fuel cell operating conditions, whereas 250 and almost 400 mA cm−2 were achieved with Pt0.8Ru0.2/C and Pt/C anodes. The Pt0.9Sn0.1/C anode leads to higher power densities at low current densities and to the same maximum power density as the Pt/C anode.  相似文献   

20.
In this paper, a new vapor feed fuel delivery system for a passive direct methanol fuel cell (DMFC) is developed and tested. Anode hydrophilic layers, electrical heating power and carbon dioxide release are examined to find their effects on the power density, efficiency and average temperatures of the cell. The hydrophilic layers act as a buffer layer between the vapor chamber and the anode gas diffusion layer (GDL). This layer allows water and methanol to mix, as well as distribute uniformly across the anode surface. Measurement of several parameters such as current, voltage, power, internal resistance, vapor chamber pressure, relative humidity and carbon dioxide concentration are taken. A maximum power density of 33 mW cm?2 is achieved as well as 120 h of continuous operation at a constant current of 50 mA cm?2 using the vapor feed system. The fuel utilization efficiency during the 120 h test is 34.8% and the energy efficiency is 8.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号