首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dependence of the recovery of the transition temperature shift after annealing (475 °C, 100 h) on copper and phosphorus contents has been studied on irradiated reactor pressure vessel (RPV) materials. A set of model alloys with low nickel content, lower than 0.2 mass%, was used for the study. Copper and phosphorus contents were varied in a wide range: 0.005–0.99 and 0.002–0.039 mass%, respectively.  相似文献   

2.
In this work, a practical numerical model with few parameters was proposed for the prediction of environmental hydrogen embrittlement. The proposed method adopts hydrogen enhanced plasticity-based mechanism in a fracture strain model to describe hydrogen embrittlement. Fracture toughness degradation of three commercial steels SA372J70, AISI4130 and X80 in high pressure hydrogen environment were investigated. Firstly, governing equations for hydrogen distribution and material damage evolution was established. Hydrogen enhanced localized flow softening effect was coupled within fracture strain dependency on stress triaxiality. Then, the numerical implementation and identification process of model parameters was described. Model parameters of the investigated steels were determined based on experiment results from literatures. Finally, with the calibrated model, fracture toughness reduction of the steels was predicted in a wide range of hydrogen pressure. The prediction results were compared with experimental results. Reasonable accuracy was reached. The proposed method is an attempt to reach balance between physical accurate prediction and engineering practicality. It is promising to provide a simplified numerical tool for the design and fit for service evaluation of hydrogen storage vessels.  相似文献   

3.
The Reactor Pressure Vessel (RPV) material of Nuclear Power Plants (NPP) is exposed to neutron irradiation during its operation. Such exposure generally induces degradation of the mechanical and physical properties of the materials: e.g. an increase of the ductile to brittle transition temperature (DBTT) and a decrease of the upper shelf impact energy.At a given irradiation temperature, dose and neutron spectrum, the sensitivity of materials to neutron irradiation depends on their chemical composition. In particular, elements like phosphorus, P, copper, Cu, and nickel, Ni play a key role in RPV steels.The effect of fluence rate on irradiation embrittlement of RPV materials is also a key issue for the correct interpretation of accelerated data and surveillance data in view of reactor pressure vessel life assessment of nuclear reactors. Much effort was done in the last decades to tackle such issues and quite contradictory results have been obtained.Model alloys can successfully be used to study embrittlement mechanisms and the effect of fluence rate. A parametric study of the response to neutron irradiation of 32 different model alloys with systematic variation of elements (Ni from 0.004 to ∼2 wt%, P from 0.001 to 0.039 wt%, Cu from 0.005 to ∼1 wt%) was completed by some members of the European Network AMES. The irradiation of the 32 model alloys took place in the LYRA rig at the High Flux Reactor (HFR) of the Joint Research Centre, Petten, The Netherlands.Some model alloys were also irradiated in commercial reactors, namely in Rovno Nuclear Power Plant (NPP), Ukraine, and Kola NPP in Russia. Data available on these model alloys are presented and analysed in this paper, proving to be very important for the study of fluence rate effect.  相似文献   

4.
Hydrogen embrittlement of Cr-Mn-N-austenitic stainless steels   总被引:1,自引:0,他引:1  
Cr-Mn-N austenitic steels show a unique combination of properties, i.e. high strength, high ductility, non magnetic and good corrosion resistance at costs being much lower compared to Cr-Ni austenitic steels. Hydrogen environment embrittlement (HEE) was investigated by slow displacement tensile testing in hydrogen atmosphere at 10 MPa and −50 °C. The fracture appearance of stable Cr-Mn-N austenitic steels with lower Mn contents (12Mn-0.7N) was transgranular whereas higher Mn contents (18Mn-0.7N) resulted in twin boundary fracture. This change in fracture morphology was related to a modest change in macroscopic ductility. Such fracture behaviour is similar to what is known from metastable Cr-Ni austenitic steels, therefore, Mn and/or N cannot be used to replace Ni in stable austenitic high HEE resistant steels.  相似文献   

5.
Hydrogen and fuels derived from it will serve as the energy carriers of the future. The associated rapidly growing demand for hydrogen energy-related infrastructure materials has stimulated multiple engineering and scientific studies on the hydrogen embrittlement resistance of various groups of high performance alloys. Among these, high-Mn steels have received special attention owing to their excellent strength – ductility – cost relationship. However, hydrogen-induced delayed fracture has been reported to occur in deep-drawn cup specimens of some of these alloys. Driven by this challenge we present here an overview of the hydrogen embrittlement research carried out on high-Mn steels. The hydrogen embrittlement susceptibility of high-Mn steels is particularly sensitive to their chemical composition since the various alloying elements simultaneously affect the material's stacking fault energy, phase stability, hydrogen uptake behavior, surface oxide scales and interstitial diffusivity, all of which affect the hydrogen embrittlement susceptibility. Here, we discuss the contribution of each of these factors to the hydrogen embrittlement susceptibility of these steels and discuss pathways how certain embrittlement mechanisms can be hampered or even inhibited. Examples of positive effects of hydrogen on the tensile ductility are also introduced.  相似文献   

6.
Seven stable austenitic steels (stable with respect to γ → α′ transformation at room temperature) of different alloy compositions (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N, 0.6C–23Mn, 1.3C–12Mn, 1C–31Mn–9Al, 18Cr–19Mn–0.8N) were tensile tested in high-pressure hydrogen atmosphere to assess the role of austenite stability on hydrogen environment embrittlement (HEE). The influence of hydrogen on tensile ductility was small in steels that are believed to have a high initial portion of dislocation cross slip (18Cr–12.5Ni, 18Cr–35Ni, 18Cr–8Ni–6Mn–0.25N), while the effects of hydrogen were significantly greater in steels with other primary deformation modes (planar slip in 18Cr–19Mn–0.8N and 1C–31Mn–9Al or mechanical twinning in 0.6C–23Mn and 1.3C–12Mn) despite comparable austenite stability at the given test conditions. It appears that initial deformation mode is one important parameter controlling susceptibility to HEE and that martensitic transformation is not a sufficient explanation for HEE of austenitic steels.  相似文献   

7.
The variation of Ki with time to fracture and the threshold values of KISH in an hydrogen environment were measured for four CrMo and CrMoV pressure vessel steels in various conditions of heat treatment. The CrMoV grades displayed higher KISH thresholds, suggesting that they are less susceptible to hydrogen embrittlement than CrMo grades of comparable strength. The findings were analysed with regard to the concurrent presence of various alloying elements and their effects on the microsegregation of detrimental impurity elements at the austenitic grain boundaries, where these harmful elements can, in conjunction with hydrogen, cause intercrystalline embrittlement. Studies were also made of the kinetics of stable crack growth in these materials.  相似文献   

8.
Hydrogen embrittlement of low-alloy steels has been investigated in relation to its dependence on hydrogen trapping and release, on the electrolytic hydrogen charging parameters, and on irradiation. The interaction of hydrogen with the structure of irradiated and unirradiated steels at higher charging current densities causes structural defects which can lead to a loss of ductility of the steel even after hydrogen release. The presence and the character of grain boundaries, secondary phases and other defects in the steel structure are of great importance from the viewpoint of the hydrogen embrittlement effect.  相似文献   

9.
A simple model based on the additive contribution of three independent radiation damage mechanisms has been developed in order to analyse and understand embrittlement and re-embrittlement data. The proposed model can also be used for fitting purposes if sufficient data points are available and in those cases where non-regular behaviour is observed. In particular, the model can explain the different behaviour of re-embrittlement when compared to primary embrittlement as has been observed for annealed VVER-440 RPV materials with high P contents.The model itself, its assumptions and its potential are explained in detail in this paper together with the predicted behaviour and comparison with available selected example data from JRQ steel, 15H2MFA VVER-440 RPV forgings and VVER-440 welds.  相似文献   

10.
11.
In a near future, with an increasing use of hydrogen as an energy vector, gaseous hydrogen transport as well as high capacity storage may imply the use of high strength steel pipelines for economical reasons. However, such materials are well known to be sensitive to hydrogen embrittlement (HE). For safety reasons, it is thus necessary to improve and clarify the means of quantifying embrittlement. The present paper exposes the changes in mechanical properties of a grade API X80 steel through numerous mechanical tests, i.e. tensile tests, disk pressure test, fracture toughness and fatigue crack growth measurements, WOL tests, performed either in neutral atmosphere or in high-pressure of hydrogen gas. The observed results are then discussed in front of safety considerations for the redaction of standards for the qualification of materials dedicating to hydrogen transport.  相似文献   

12.
Several commercial bcc steels with various combinations of ferritic, pearlitic, bainitic and martensitic microstructures were tensile tested in gaseous hydrogen (10 MPa) at room temperature.  相似文献   

13.
The study of steels which guarantee safety and reliability throughout their service life in hydrogen-rich environments has increased considerably in recent years. Their mechanical behavior in terms of hydrogen embrittlement is of utmost importance. This work aims to assess the effects of hydrogen on the tensile properties of quenched and tempered 42CrMo4 steels. Tensile tests were performed on smooth and notched specimens under different conditions: pre-charged in high pressure hydrogen gas, electrochemically pre-charged, and in-situ hydrogen charged in an acid aqueous medium. The influence of the charging methodology on the corresponding embrittlement indexes was assessed. The role of other test variables, such as the applied current density, the electrolyte composition, and the displacement rate was also studied. An important reduction of the strength was detected when notched specimens were subjected to in-situ charging. When the same tests were performed on smooth tensile specimens, the deformation results were reduced. This behavior is related to significant changes in the operative failure micromechanisms, from ductile (microvoids coalescence) in absence of hydrogen or under low hydrogen contents, to brittle (decohesion of martensite lath interfaces) under the most stringent conditions.  相似文献   

14.
The effect of age-hardening regime on peculiarities of hydrogen-assisted fracture and tensile properties in two high-nitrogen Fe-23Cr-17Mn-0.1C-0.6N and Fe-19Cr-22Mn-1.5V-0.3C-0.9N steels was studied. A large number of intergranular (austenite/austenite) and interphase boundaries (austenite/coarse particle) provides high fraction of trapping sites for hydrogen atoms in V-alloyed steel. This leads to a change in fracture regime from transgranular brittle mode in coarse-grained V-free steel to intergranular brittle fracture of hydrogen-assisted surface layers in fine-grained V-alloyed steel with coarse (V,Cr)(N,C) particles. The formation of cells (Cr2(N,C) particles and austenite) along the grain boundaries due to discontinuous precipitate-hardening reaction facilitates predominantly interphase hydrogen-assisted fracture for both steels. The complex reaction of the particle-strengthening mechanisms including discontinuous precipitation with formation of austenite/Cr2(N,C)-plates interfaces or homogeneous nucleation of coherent (V,Cr)(N,C) particles in austenite (age-hardening regime 700 °C, 10 h) promotes mainly transgranular cleavage-like fracture mode under hydrogen-charging. The structural scheme is proposed to describe a change in hydrogen-assisted fracture micromechanisms and tensile properties of the steels with different density and distribution of interphase and intergranular boundaries.  相似文献   

15.
The idea of an engineering version of the local approach to brittle fracture as well as the possibility for it to be employmed to estimate irradiation embrittlement of pressure vessel (PV) steels is considered. Unlike the conventional temperature-shift-based methodology, the approach presented utilises the concept of stability of the ductile state of the metal. A new characteristic “parameter of mechanical stability” Pms is proposed. This characteristic enables quantification of the level of stability of the ductile state of an irradiated PV steel in a specimen or in a reactor vessel with a crack at the specified level of loading. Within the framework of the proposed concept, a value for end-of-life fluence for a reactor PV is predicted by the condition of exhaustion of stability of a ductile state of a steel ahead of the crack (Pms=1).  相似文献   

16.
A review of the effect of hydrogen on materials is addressed in this paper. General aspects of the interaction of hydrogen and materials, hydrogen embrittlement, low temperature effects, material suitability for hydrogen service and materials testing are the main subjects considered in the first part of the paper. As a particular case of the effect of hydrogen in materials, the hydride formation of titanium alloys is considered. Hydrogen absorption and the possible associated problems must be taken into account when considering titanium as a candidate material for high responsibility applications. The sensitivity of three different titanium alloys to the Hydrogen Assisted Stress Cracking phenomena has been studied by means of the Slow Strain Rate Technique (SSRT). The testing media have been sea water and hydrogen has been produced on the specimen surface during the test by cathodic polarization. Tested specimens have been characterized by metallography and scanning electron microscopy. Results obtained show that the microstructure of the materials, particularly the β-phase content, plays an important role on the sensitivity of the studied alloys to the Hydrogen Assisted Stress Cracking Phenomena.  相似文献   

17.
Modelling for the irradiation effect on ductile fracture toughness of reactor pressure vessel steels (RPV) is performed on the basis of ductile fracture criterion proposed earlier by the authors. The irradiation effect on mechanisms controlling ductile fracture is considered from a physical viewpoint. Modelling of the irradiation effect is carried out on the critical strain for smooth cylindrical specimens and on the local critical strain for cracked specimens. On the basis of the performed studies a scheme that allows an evaluation of the upper shelf level of the KIC(T) curve for irradiated RPV steels is proposed.  相似文献   

18.
Modelling for the irradiation effect on brittle fracture toughness of reactor pressure vessel (RPV) steel is performed on the basis of the probabilistic model for fracture toughness prediction proposed by the authors earlier. The irradiation effect on parameters controlling plastic deformation and brittle fracture of RPV steels is analyzed. The physical mechanisms are considered which control the cleavage microcrack nucleation for RPV steels in the unirradiated and irradiated states and also in state after post-irradiation annealing. Prediction of the temperature dependence of brittle fracture toughness is performed as applied to irradiated 2.5Cr–Mo–V reactor pressure vessel steel. Modelling of the fluence effect and the phosphorus and copper content effect on brittle fracture toughness is carried out. It is shown that the probabilistic model based on a new formulation for brittle fracture criterion allows the adequate modelling for the irradiation effect on fracture toughness for RPV steel. Application of alternative models is discussed for fracture toughness prediction for irradiated RPV steels.  相似文献   

19.
Cryogenic and Tempered (CT) treatments were performed on commercial TRIP 780 steels in order to reduce the hydrogen embrittlement (HE) susceptibility. The HE behavior was assessed immediately after cathodically hydrogen charging on both CT treated and untreated samples. Slow strain-rate tensile (SSRT) tests were conducted to evaluate their HE performance. It is shown that samples with CT treatments behave higher resistance to HE comparing with their untreated counterparts. Meanwhile, microstructure characterization and magnetization measurements were adopted to reveal the evolution of retained austenite (Ar) and its stabilization due to CT treatment. Moreover, hydrogen-induced cracking (HIC) accompanied with martensite phase transformation in TRIP steel was studied by electron backscattering diffraction (EBSD) technique and it was proved that cracks initiated from the fresh untempered martensite inherited from phase transformation of unstable Ar upon straining. Finally, results in this study demonstrate the relationship between Ar stability and HE susceptibility, and provide a possible solution to reduce HE susceptibility in TRIP steels.  相似文献   

20.
In the present work, an investigation on the susceptibility to hydrogen embrittlement of AISI 304 and 310 austenitic stainless steels was performed. The hydrogen embrittlement process leads to degradation of mechanical properties and can be accelerated by the presence of surface defects combined with elevated surface hardness. Tensile test specimens of the selected materials were machined by turning with different cutting parameters in order to create variations in surface finish conditions. The samples thus prepared were submitted to tensile tests before and after hydrogen permeation by cathodic charging. Regarding the AISI 304 steel, it was possible to notice that the presence of strain-induced martensite on the material surface led to severe hydrogen embrittlement. In the case of the AISI 310 steel, due to its higher nickel amount, no martensite formation could be detected, and this steel was found to be less susceptible to embrittlement in the tested conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号