首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
气泡发生器是钍基熔盐堆脱气系统的关键部件,其功用为将载气碎化成尺寸均匀的小气泡。本文在脱气系统水实验回路实验研究基础上,采用数值模拟方法,应用SIMPLEC算法对标准的k-ε湍流模型和多相流混合模型进行耦合求解,分析了沿气泡发生器流动方向的气液两相流场速度变化、压力变化、湍动能分布规律。沿流向的速度分布表明,气相从喉部开始沿壁面流动,包围位于中心区域的水相,气相速度在扩张段入口处明显降低,速度梯度的变化形成剪切,使得气相破碎、分裂;压力分布表明,在气泡发生器的扩张段入口附近出现了压力梯度的峰值,与实验中测得的气泡集中碎化的位置相近,说明压力的迅速回升可能加速了气泡的碎化;湍动能分布表明,扩张段出口湍动能相对较大,说明此处气液两相能量交换强烈,产生强烈的剪切应力,使气液两相彼此剪切、破碎。以上结果说明,扩张端入口处由于较大的速度梯度及湍动能峰值,导致产生巨大的剪切应力,使气泡出现集中破裂现象。  相似文献   

2.
文丘里式气泡发生器渐扩段的流场结构、流动参数等对气泡制备性能起关键作用,因此,对具有矩形截面的文丘里通道渐扩段区域单气泡输运过程进行了可视化研究。分析发现,渐扩段气泡剧烈减速及变形过程对气泡最终的断裂和破碎起关键作用。气泡的减速过程虽只持续数ms时间,依然呈现加速减速和降速减缓两个明显阶段;气泡旋转过程呈现相似的变化规律。在液体流量2.4~6.9 m3/h范围内,对应最大旋转速度可达900~3 000 rad/s。气泡旋转过程持续时间较减速过程稍长,气泡最大旋转速度的位置出现在最大减速加速度位置的下游约2 mm处;液体流量和气泡尺寸对气泡旋转和变形过程有明显影响,液体流量越大或气泡尺寸越小,气泡旋转过程越剧烈,且旋转速度在更短距离内达到最大值;增大液体流量在一定范围内加剧了气泡的拉伸变形。这些可视化研究结果,为进一步揭示文丘里气泡发生装置内气泡的碎化机制、完善数值分析模型、优化设计等提供参考和帮助。  相似文献   

3.
《核技术》2018,(11)
文丘里式气泡发生器因其结构简单、能够有效产生所需均匀粒径的微气泡等优点,被熔盐堆脱气系统所采用。本文在脱气回路水力试验台架的实验基础上,借助高速相机来研究气泡在文丘里气泡发生器喉部和扩张段处的运动和碎化特性。研究表明:气泡运动可以分为4个阶段:1)气泡高速稳定运动阶段;2)气泡速度剧烈变化阶段;3)气泡速度稳定波动阶段;4)气泡低速稳定运动阶段。随着进气孔径的增大气泡在上述4个阶段的稳定性增加;随着水流量的增加,第二和第三阶段的区域将会向靠近x=0 mm处缩小。其中气泡的碎化过程主要是在第二阶段发生的。  相似文献   

4.
气泡分离器是熔盐堆脱气系统中不可或缺的关键设备之一,通过离心分离的方式去除反应堆中氙等裂变气体及其载气。本文利用CFD软件Fluent,采用瞬态的二次压应力雷诺应力模型,对气泡分离器内部液相流场进行了数值模拟。分析了边界条件变化对分离器分离特性的影响。结果表明:系统压力对切向速度分布、压力分布及轴向零速包络面的结构均有较大影响,进而影响设备的分离特性。另外,对比计算结果与实验现象,也可看出,增加出口压力有利于气液分离。  相似文献   

5.
《核动力工程》2016,(6):41-44
借助影像处理软件PFV和图像处理软件Image-Pro Plus,详细分析了高速摄像仪获取的文丘里管气泡发生器内气泡的输运及破碎过程。研究表明:文丘里管气泡发生器内气泡的破碎过程存在2个明显的不同阶段;气泡在扩张段入口处存在明显的减速过程,且在减速过程中存在3种主要的形变过程;气泡的减速过程对气泡的碎化存在重要影响;气泡在扩张段的迅速减速,造成了气-液之间的运动速度差迅速加大,极大强化了气-液之间的相互作用,致使在扩张段较大直径的气泡迅速碎裂成大量的微小气泡。  相似文献   

6.
有限深度液体中气泡破碎的参数影响   总被引:1,自引:0,他引:1  
在改进气泡破碎数理模型的基础上,研究了流体粘性力、气泡壁初始速度、有限液面高度、液面压力、液体密度等因素对气泡破碎的影响规律.数值计算结果表明,气泡临界破碎条件与这些因素密切相关.随着液体深度的增大,气泡更容易破碎,当液体深度大于气泡半径的100倍时,液体深度对气泡破碎临界条件几乎无影响,此时可以近似认为气泡位于无穷深液体中;当气泡壁初始速度为0m/s时,气泡不容易破碎;气泡具有初始收缩的速度时,气泡最容易破碎;随着气泡壁初始速度的绝对值、液体表面压强和液体密度的增大,气泡也更容易破碎.  相似文献   

7.
文丘里式气泡发生器渐扩段的流场结构、流动参数等对气泡制备性能起关键作用,因此,对具有矩形截面的文丘里通道渐扩段区域单气泡输运过程进行了可视化研究。分析发现,渐扩段气泡剧烈减速及变形过程对气泡最终的断裂和破碎起关键作用。气泡的减速过程虽只持续数ms时间,依然呈现加速减速和降速减缓两个明显阶段;气泡旋转过程呈现相似的变化规律。在液体流量2.4~6.9 m~3/h范围内,对应最大旋转速度可达900~3 000 rad/s。气泡旋转过程持续时间较减速过程稍长,气泡最大旋转速度的位置出现在最大减速加速度位置的下游约2 mm处;液体流量和气泡尺寸对气泡旋转和变形过程有明显影响,液体流量越大或气泡尺寸越小,气泡旋转过程越剧烈,且旋转速度在更短距离内达到最大值;增大液体流量在一定范围内加剧了气泡的拉伸变形。这些可视化研究结果,为进一步揭示文丘里气泡发生装置内气泡的碎化机制、完善数值分析模型、优化设计等提供参考和帮助。  相似文献   

8.
气溶胶池洗过滤是反应堆严重事故中去除放射性源项的重要手段。本文以严重事故条件下上升气泡中气溶胶的滞留过程为背景,设计搭建了可视化单气泡鼓泡实验装置。通过该装置研究了气溶胶在上升气泡中的沉降效率,并与MELCOR中的气溶胶沉降模型计算结果进行了对比。结果表明,气溶胶沉降效率对气泡尺寸的变化较为敏感,当气体流量大于0.1 L/min时,气泡等效直径迅速增加,相应的气溶胶沉降效率快速降低;与MELCOR模型计算结果的对比表明,两者在总体趋势上呈现出较好的一致性,但计算结果低估了液相对气溶胶的实际去除能力,导致这种偏差的主要原因是气泡在上升过程中存在无规则的晃动以及气液界面的波动。  相似文献   

9.
《核动力工程》2016,(6):37-40
利用基于格子Boltzmann(LB)方法开发的气液相变数值模型,考察在竖直方向重力加速度恒定的情况下,水平方向加速度对工质为水的流动沸腾中气泡生长过程的影响,可以发现:气泡脱离直径与水平方向加速度呈指数减小关系,气泡脱离频率与水平方向加速度呈指数增大关系;气泡脱离时,前接触角随水平方向加速度增大而增大,后接触角随水平方向加速度增大而减小,但当水平方向加速度增加到一定程度时,气泡前后接触角均趋于恒定;气泡脱离后,水平方向加速度越大,气泡越是贴近下边界运动。  相似文献   

10.
裂变气体分离器气泡分离轨迹的数值模拟   总被引:1,自引:0,他引:1  
钍基熔盐堆是我国重点开发的第四代核反应堆之一,其裂变反应产生的中子俘获截面大的Kr、Xe等裂变气体以微气泡的形式存在于熔盐冷却剂中,对裂变气体的分离是提高熔盐堆中子经济性、实现燃料深燃耗的重要环节。为定量地获得分离器内气泡的分离行为,采用数值模拟和理论建模相结合的方法,得到旋流场的流场分布特征;通过建立旋流场中气泡运动控制方程,分析并计算不同旋流度和气泡直径下的分离长度。与实验数据对比发现,数值模拟结果和实验数据吻合良好,表明数值模拟方法可以用于气液分离器的优化设计。  相似文献   

11.
利用可视化方法研究文丘里式气泡发生器内气泡的输运和破碎过程。实验以水和空气为工质,水流量范围为15~20 m3/h,气流量范围为0.6~0.7 L/min,空泡份额在0.2%~0.3%之间。结果表明:不同于常规通道,气泡在从文丘里管喉部流出后具有一个明显的减速过程,使得气液相对速度随之增加,该减速过程对气泡变形和破碎存在极大影响;水流量对气泡的破碎位置无明显影响,气泡破碎位置通常发生在渐扩段距喉部8~10 mm左右的范围,处于壁面涡流区与主流的交界附近。  相似文献   

12.
利用高速摄像仪对高过冷度下含不凝性气体的蒸汽气泡冷凝及破裂过程进行可视化研究,以分析不凝性气体对气泡微细化沸腾(MEB)过程的影响。实验结果表明:初始不凝性气体体积份额x0小于2.5%时,气泡突然破碎成大量微小气泡;x0在2.5%~7.5%之间时,较大气泡只会分裂成数个小气泡;x0大于7.5%时,气泡界面非常稳定,不会发生破碎和分裂现象。此外,当蒸汽气泡中含有较多不凝性气体时,气泡凝结过程减弱,液体对气泡的惯性冲击减小,气泡不易破裂。由此可表明,在气泡微细化沸腾发生时,不凝性气体的存在会阻碍加热面上气泡的破碎,从而降低传热能力。  相似文献   

13.
采用活性炭低温收集的方法对空气中的氙(Xe)进行收集,经活性炭初步分离后,再用5Å分子筛进一步分离纯化,获得可用于气体质谱仪测量的Xe样品,然后采用气体质谱仪对Xe的稳定同位素比(R)进行准确测量。研究确定了活性炭、分子筛对Xe的分离性能与操作条件,建立了Xe的收集和纯化方法。对空气中R(134Xe/129Xe)、R(131Xe/129Xe)、R(132Xe/129Xe)测量的相对标准偏差分别为0.32%、0.15%、0.14%(n=3)。采用该法对乏燃料剪切、溶解尾气中的Xe进行了取样、纯化、测量,并利用Xe同位素比计算了乏燃料燃耗。结果表明:采用R(132Xe/134Xe)推算的燃耗比R(131Xe/134Xe)更接近真实值,与真实值的偏差在20%左右。  相似文献   

14.
利用MCNP模拟气体裂变产物混合源的γ剂量率   总被引:1,自引:1,他引:0  
西安脉冲反应堆辐照铀靶后,抽取Kr、Xe裂变气体,通过活性炭吸附于气体源盒内。HPGe γ谱仪测量源盒内混合气体活度,塑料闪烁探测器测量γ剂量率。将源盒、塑料闪烁探测器的几何结构、材料作为蒙特卡罗程序(MCNP)输入信息,模拟塑料闪烁探测器对源盒中核素活度与其γ剂量率对应关系,结合HPGe γ谱仪所测活度得到剂量率模拟值,结果与实测值偏差小于6%。该工作说明在已知放射源空间结构、放射性核素种类和活度的情况下,采用MCNP模拟计算复杂气体放射源γ剂量率的方法是可行的。  相似文献   

15.
采用活性炭低温收集的方法对空气中的氙(Xe)进行收集,经活性炭初步分离后,再用5Å分子筛进一步分离纯化,获得可用于气体质谱仪测量的Xe样品,然后采用气体质谱仪对Xe的稳定同位素比(R)进行准确测量。研究确定了活性炭、分子筛对Xe的分离性能与操作条件,建立了Xe的收集和纯化方法。对空气中R(134Xe/129Xe)、R(131Xe/129Xe)、R(132Xe/129Xe)测量的相对标准偏差分别为0.32%、0.15%、0.14%(n=3)。采用该法对乏燃料剪切、溶解尾气中的Xe进行了取样、纯化、测量,并利用Xe同位素比计算了乏燃料燃耗。结果表明:采用R(132Xe/134Xe)推算的燃耗比R(131Xe/134Xe)更接近真实值,与真实值的偏差在20%左右。  相似文献   

16.
气泡形状变化对两相流动和热质传递过程有着重要影响。本文利用高速摄像仪和粒子图像测速(PIV)技术对生长和浮升过程中气泡的形状振荡特性进行了实验研究,分析了不同注气流量下气泡形状及其周围流场的变化规律。实验结果表明,气流量对脱离后气泡的形状有着明显影响,在低流量下,脱离气泡逐渐由长椭球形转变为扁椭球形,而在高流量下,脱离气泡与生长气泡的聚合将导致气液界面大幅振荡。此外,振荡气泡对其尾流区内生长气泡形状的影响同样不容忽视,其会引起生长气泡所受惯性作用增强,进而导致气泡形状波动。  相似文献   

17.
为研究过冷度对蒸汽气泡破碎及微气泡喷射过程的影响,利用高速摄像机记录不同过冷度下过冷池中蒸汽气泡凝结过程。实验结果表明:在低过冷度(ΔTsub=17K)下,蒸汽气泡界面波动发展缓慢,气泡不会破碎,而是逐渐分裂凝结;在高过冷度(40KΔTsub75K)下,蒸汽气泡表面上的波动剧烈发展,随后气泡会突然破碎,并形成大量微气泡;在ΔTsub=30K时,气泡突然破碎前会有小气泡分裂现象发生。40KΔTsub75K时气泡破碎形成的微气泡的直径和速度在量级上与气泡微细化沸腾区域的微气泡接近。随过冷度的升高,微气泡的直径减小,速度增加,且蒸汽气泡破碎前其表面上波动的波数迅速增加,波动的最大幅值先增加后减少。  相似文献   

18.
沸腾是一个复杂的换热过程,大量实验表明,不同核化点的脱离直径存在区别,即使在同一工况下,同一核化点产生的汽泡脱离直径也会大小不一,因此汽泡尺寸分布不可忽略。尽管目前已有较多用于汽泡平均尺寸的计算关系式,但对于尺寸分布的研究仍较少。因此,本文针对流动沸腾下汽泡脱离直径的尺寸分布进行研究,对比常用的伽马函数和正态分布函数描述这一分布时的准确度,确定概率函数后,再对概率密度函数中两个重要的参数均值和标准差进行分析,最后得到一套预测不同工况下汽泡尺寸分布的关系式,该关系式准确度较高,并考虑了壁面过热度、质量流速等因素的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号