共查询到17条相似文献,搜索用时 47 毫秒
1.
高速切削中锯齿形切屑的研究 总被引:1,自引:0,他引:1
高速切削技术是先进制造技术,是以高切削速度、高进给速度和高加工精度为主要特性加工技术。对于不同的切削材料和不同的金属特性,在高速切削中可以看到两种不同的切屑形式,它们分别是稳定状态的连续型切屑和周期剪切型切屑(锯齿形切屑)。稳定状态的连续型切屑中含有集中剪应力,该集中剪应力产生于穿过剪切区发生塑性流动的被切金属中,并且当被切金属以切屑形式离开剪切区后,就不再发生更多的塑性变形。随着切削速度的不断提高,在某一个临界切削速度下切屑会由连续型切屑向锯齿形切屑转变。一般来说,以高切削速度、高进给量对工件… 相似文献
2.
3.
4.
5.
6.
7.
为了探索材料断裂准则模型对钛合金有限元切削仿真的影响,运用DEFORM-2D切削模块模拟TC4锯齿形切屑的形成过程。分别选取四组不同的断裂准则参数导入断裂准则模型后进行有限元仿真,并将切屑仿真结果与实验中同等切削条件下获得的金相切屑标本的SEM微观几何形貌进行量化比较,分析结果表明当断裂准则参数取时仿真结果与实验结果相对误差最小,从而获得适合锯齿形切屑切削仿真的断裂准则理论参数,为难加工材料的切削仿真提供了理论参考。 相似文献
8.
针对淬硬钢SKD11硬切削形成的锯齿形切屑,通过金相显微镜和扫描电子显微镜(SEM)观察了切屑的金相组织和微观形貌,分析了不同的切削速度下锯齿形切屑的特点,讨论了绝热剪切发生时剪切带内动态剪应力和温度的变化规律。研究结果表明:SKD11硬切削在低速和高速切削时均产生锯齿形切屑;提高切削速度有利于锯齿化程度的增加;锯齿形切屑的形成同时存在断裂和绝热剪切两种机制,并且随着切削速度的提高,切屑由周期断裂型向绝热剪切型转变;在绝热剪切过程中剪应力变化呈现二次曲线形式,且切削区温度对动态剪应力变化曲线具有较显著的影响;通过提高切削速度可以提高切削温度,抑制材料的硬化效应,引发剪切失稳,从而减小切削力。 相似文献
9.
镍基高温合金切削加工锯齿形切屑研究 总被引:2,自引:0,他引:2
以镍基高温合金GH4169和GH3030为研究对象,采用未涂层和涂层刀具进行车削加工试验,通过对金相、切削力、切削温度及刀具磨损形态的检测,阐明锯齿形切屑形成的机理,并对两种材料的切削加工性进行比较。研究结果为该类材料切削工艺的优化提供了试验依据。 相似文献
10.
基于ABAQUS分析了高速切削过程中锯齿形切屑的形成机理和影响切屑锯齿化程度的主要因素,选取不同切削速度和刀具前角进行切屑形成过程模拟和测试。结果表明,随着切削速度的增加以及刀具前角的减小,切屑的锯齿化程度随之增大。 相似文献
11.
12.
13.
14.
应用Hopkinson压杆实验装置,确定了航空用钛合金Ti6Al4V高应变和高温条件下的应力-应变关系,结合Ti6Al4V合金准静态试验数据,建立了适合高速切削仿真的Johnson-Cook本构模型;通过有限元数值模拟,仿真了高速切削Ti6Al4V合金的锯齿状切屑形成过程,分析了整个锯齿状切屑形成过程的切削力、切削温度、等效塑性应变的变化,深入探讨了锯齿状切屑的形成机理;将模拟计算得到的切削力和切削温度与试验结果进行了比较,两者具有较好的一致性。
相似文献
相似文献
15.
为揭示预应力切削对钛合金Ti6Al4V加工表面残余应力的调整机理,探讨切削时锯齿形切屑的形成过程,基于预应力切削原理建立了钛合金的预应力切削有限元模型,模拟了0、280 MPa和560 MPa这3种预应力下的锯齿形切屑形成过程以及已加工表面的残余应力分布。结果表明:采用预应力切削方法可以调整钛合金已加工表面的残余应力状态;预应力对锯齿形切屑的形成过程和切屑特征无明显影响;在材料弹性极限内施加越大的预应力,表面层残余压应力效果越显著,次表层最大残余压应力值越高,残余压应力层分布也越深。 相似文献
16.
基于滑—停—滑机理的锯齿形切屑高速成形分析 总被引:1,自引:2,他引:1
高速车削时被切削材料以极高的应变速率产生连续的塑性变形,产生大量的切削热,在出现集中剪切滑移的情况下,产生了连续型带状锯齿形切屑。根据高速外圆车削中碳淬硬钢切屑试样的SEM照片和金相显微组织照片分析了锯齿形切屑周期性形成的变形机理。被切削材料的变形过程由普通的剪切滑移变形和集中剪切滑移变形组成,切屑沿前刀面的流出可细分为“滑—停—(再)滑”三个阶段。切削速度和材料硬度是决定切屑变形的两个主要影响因素。只要能够使材料应变率增加、致使切削温度升高的因素改变达到某种临界状态都能促成锯齿形切屑的形成,锯齿形切屑的形态随着切削用量的改变而变化。 相似文献