首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
杨世伦  安阳  孙辉  沈本贤  汤晟  赵德银 《化工进展》2019,38(10):4534-4541
为了解决新疆塔河油田伴生天然气中高含量有机硫的脱除难题,需开发高效脱硫溶剂。基于已在天然气净化领域工业应用的UDS-2溶剂的初始组成,采用量子化学计算并结合溶解度COSMO-RS模型预测优选提高甲硫醇(MeSH)溶解性能的溶剂组分,改进原UDS-2溶剂对MeSH的脱除性能,并分别在常压和高压吸收实验装置上对比考察不同溶剂对模拟塔河油田伴生天然气的吸收净化效果。结果表明,聚合度为5的聚乙二醇二甲醚(PEGDME-3)与MeSH分子之间的相互作用最强,对MeSH的溶解性能最好,相同条件下,MeSH在PEGDME-3中的亨利系数最小,40℃时的亨利系数为14.9 MPa·L/mol。PEGDME-3调配入原UDS-2溶剂中获得的改进UDS溶剂,对MeSH和总有机硫的脱除率较改进前原UDS-2溶剂分别提高了10.1%~11.4%和7.2%~8.5%。所得结论将有助于进一步提高UDS溶剂的有机硫脱除效率,满足塔河油田伴生天然气高含量有机硫的脱除净化需求。  相似文献   

2.
<正>产品和技术简介:为了适应川东北油气田严格的脱硫净化要求,基于不同溶剂组分对各硫化物分子脱除性能的差异设计开发了UDS高效脱硫溶剂。在8.3 MPa的工业设计条件下,模试和侧线试验的结果表明,UDS溶剂对有机硫化物的脱除率比MDEA高出近30个百分点。在气液比169、操作压力1.5 MPa的条件下,  相似文献   

3.
在对现有各种天然气净化工艺进行对比分析的基础上,确定出适合用于中亚高有机硫天然气的净化方法,配制出新型活化MDEA复合溶液,并考察其对高有机硫天然气的净化能力。实验结果表明:向MDEA溶液中添加活化剂PZ和物理溶剂环丁砜,可以显著提高其对有机硫的脱除能力;PZ合适添加量为6.0%,环丁砜合适添加量为15%;新型三元活化MDEA复合溶液对有机硫等弱酸性气体具有良好的吸收能力,可以用于中亚高有机硫天然气的净化处理。  相似文献   

4.
"两气"脱硫装置脱除有机硫的溶剂配方研究   总被引:5,自引:0,他引:5  
许辉宗 《广州化工》2001,29(3):22-23
针对MDEA水溶液脱除有机硫效率低的问题 ,本文研究了物理溶剂类、醇胺类添加剂对脱除有机硫的影响 ,筛选出复合型配方溶剂 ,其对有机硫脱出率比MDEA水溶液高 30 %以上。该研究结果对现有装置的挖潜改造、提高现有装置的脱硫能力具有指导意义  相似文献   

5.
冷南江  马国光  张涛  雷洋  彭豪  熊祚帅  陈玉婷 《化工进展》2022,41(10):5342-5353
在使用单一甲基二乙醇胺(MDEA)溶液脱除天然气中H2S的过程中,随着有机硫含量不断地增加,常常造成出料气中H2S和总硫含量均不能满足国家二类天然气质量要求。在改变关键参数后,脱硫效果仍然不能改善。因此,本文针对高含量的有机硫,开展了MDEA+DIPA、MDEA+DEA、环丁砜+MDEA、环丁砜+DIPA 4组高效脱硫剂的复配研究,通过对比H2S及有机硫在溶液中的吸收分压,筛选出了吸收效果较优的脱硫剂组合为:环丁砜+MDEA。随后再利用BBD响应面分析法,以环丁砜、MDEA、H2O的不同配比为变量,以H2S和总硫脱除率最高为目标函数进行寻优,经过混料实验与复合优化,最终得出最优脱硫剂配比为:23.3%环丁砜+54.6%MDEA+22.1%H2O。最优配比脱硫剂经现场装置使用后的效果表明,H2S脱除率达到99.964%,总硫脱除率达到99.833%,出料气中H2S含量为14.4mg/m3,总硫含量为78.5mg/m3,满足二类气标准。  相似文献   

6.
介绍了目前可用于高含硫天然气有机硫脱除的工艺方法,主要有化学吸收法、物理溶剂法、化学物理溶剂法、络合铁法和膜分离法等。重点阐述了广泛使用的醇胺溶剂法的技术进展,由水溶液发展到新的溶剂配方型工艺,包括位阻胺、活化MDEA工艺等。指出高含硫天然气净化技术的发展方向是传统净化工艺与新工艺相结合,如膜法-胺法集成技术等,新技术的开发及成功应用将推动传统天然气净化技术的进一步发展。  相似文献   

7.
天然气中通常含有H2S、CO2和有机硫等酸性组分,在水存在下会腐蚀金属,含硫组分有难闻臭味、剧毒、使催化剂中毒等缺点,造成人畜伤害以及对环境严重的污染,需净化处理后方能符合标准。在各种天然气脱硫方法中溶液吸收法应用较广,其中尤以胺法最具有代表性,80年代发展起来的的MDEA法能选择性脱除H2S,对于净化低含硫、高碳硫比、高含有机硫的天然气是目前最优的方法,目前在我国应用较为广泛。因此,用MDEA法脱硫,可满足净化要求。  相似文献   

8.
针对常规甲基二乙醇胺(MDEA)脱硫溶剂对有机硫脱除率不高、含有机硫的天然气脱硫后不能满足GB17820—2018对管输气要求的问题,中国石油西南油气田公司天然气研究院开发了高效有机硫脱除溶剂CT8-24,在室内研究以及中间放大试验的基础上,在重庆天然气净化总厂引进分厂400×104m3/d装置上进行了工业应用。考察了溶剂在不同循环量、处理量、吸收塔板数以及再生温度等条件下的吸收性能,确定了较适宜的工艺操作参数。结果表明,将引进分厂400×104m3/d装置原用的MDEA水溶液改换为CT8-24后,装置运行平稳。在35层吸收塔板下,产品中H2S含量<6mg/m3,总硫<20mg/m3,达到GB17820—2018的要求。同时分析研究了CT8-24类物理-化学溶剂对MDEA脱硫装置的适应性,为其他净化厂气质达标改造工作奠定了坚实基础。  相似文献   

9.
为解决传统湿法脱硫工艺中有机硫脱除效率低、副产物多等问题,依托配方型溶剂脱硫工艺,以聚乙二醇二甲醚(NHD)、N-甲基二乙醇胺(MDEA)和水为原料构建新型湿法催化水解羰基硫(COS)脱硫体系。优化复配溶剂组成比例,确立配方溶剂组成为25% MDEA/15% H2O/60% NHD,考察了脱硫操作参数、反应温度、气体浓度、气体流量等因素对脱硫的影响,使用气相色谱和离子色谱分析探究脱硫过程及反应动力学。结果表明,在低温(298.15~343.15 K)、常压条件下对COS的脱除效率达80%以上;复配溶液将吸收后的COS催化水解为H2S和CO2,吸收过程符合准一级反应动力学。该脱硫液中有机溶剂含量占85%以上,可解决脱硫副产物产生多和碱耗大的问题,是一种新型有机介质脱硫工艺。  相似文献   

10.
介绍了华东理工大学研发的新型UDS-2高效复合脱硫溶剂在元坝净化厂300×104Nm3/d脱硫装置的运行情况,考察了UDS-2脱硫、脱碳及脱有机硫效果,并对运行中出现的问题做了具体分析。该溶剂通过在元坝净化厂脱硫装置8个月的工业应用,结果表明,UDS-2能有效脱除含硫天然气中的有机和无机硫化物,具有良好的H2S和有机硫脱除效果,对硫化物尤其是包括COS、硫醇等在内的有机硫化物的脱除选择性优于常规脱硫溶剂。溶剂的性能稳定,对设备腐蚀性小,在有机硫含量较高场合较为适用。  相似文献   

11.
SQ105型精脱硫剂的实验室研究   总被引:1,自引:1,他引:0  
介绍了SQ105型脱硫剂常温脱除H2S、COS和CH3SH的实验室研究以及在不同气体中脱除COS的性能。结果表明,该脱硫剂在常温条件下脱除COS的反应速率较低;反应温度40 ℃时,该脱硫剂显示较好的脱除COS性能,具有硫容大、脱除率高和气氛效应小的特点。  相似文献   

12.
介绍了臭氧氧化法去除工业废气中的硫化氢、硫醇的试验情况,考察了臭氧浓度、停留时间和催化剂等不同因素对去除率的影响。试验结果表明能达到较好的去除效果,硫化氢、硫醇的最终氧化产物可以不是二氧化硫,而是凝聚态的硫化物。  相似文献   

13.
炼厂碳酸钠干燥尾气的氧化脱臭试验研究   总被引:1,自引:0,他引:1  
介绍了臭氧氧化法去除工业废气中的硫化氢、硫醇的试验情况,考察了臭氧浓度、停留时间和催化剂等不同因素对去除率的影响。试验结果表明能达到较好的去除效果,硫化氢、硫醇的最终氧化物可以不是二氧化硫,而是凝聚态的硫化物。  相似文献   

14.
Aqueous amino solvents, such as monoethanolamine (ETA/MEA), methyl diethanolamine (MDEA) or amine blends, are the most widely used solvents in commercial CO2 or acid gas separation applications. These commercial solvents have various disadvantages, such as the possibilities of the solvent to be degraded. This research examines the impact of non-oxidative thermal degradations on the performance of the CO2 absorption and the degradation mechanism of amine solvents. The impact of degradation was conducted by measuring the CO2 solubility of solvent that had been heated to 120°C for 2 h. Although the performance of CO2 absorption was not significantly reduced, the degradation of amines was found. Supported by Fourier Transform Infrared (FTIR) and Gas Chromatography/Mass Spectrometer result, the suspected products of non-oxidative thermal degradation of MDEA were MEA and acetone.  相似文献   

15.
介绍了臭氧氧化法去除工业废气中的硫化氢、硫醇的试验情况,考察了臭氧浓度、停留时间和催化剂等不同因素对去除率的影响。试验结果表明能达到较好的去除效果,硫化氢、硫醇的最终氧化产物可以不是二氧化硫,而是凝聚态的硫化物。  相似文献   

16.
Synthetic natural gas (SNG), which is produced from petroleum and distributed via pipeline in Honolulu by The Gas Company, was analyzed using a gas chromatograph equipped with a sulfur chemiluminescence detector (GC/SCD). Hydrogen sulfide (H2S), methyl mercaptan (MM), ethyl mercaptan (EM), dimethylsulfide (DMS), dimethyl disulfide (DMDS), tetrahydrothiophene (THT), ethyl disulfide (EDS), and one unidentified compound (UN1) were detected. Among these sulfur compounds, THT is added as an odorant and was present in the highest concentration.A commercial activated carbon (Calgon OLC plus 12X30) was modified by oxidation and impregnation methods and the resulting materials were evaluated for their ability to adsorb sulfur compounds present in SNG. The evaluation results indicate that all of the modification methods can improve the retention of individual sulfur compounds or the total sulfur capacity compared with the untreated virgin carbon. It is also found that activated carbons impregnated with metal impurities have different selectivity for sulfur compounds. Cu and Zn loaded carbons had the highest capacity for H2S removal, Fe loaded carbon was more efficient for DMS removal (the most difficult S compound to remove), and carbon oxidized by HNO3 was the best for THT removal.Based on these findings, a composite sorbent consisting of Cu loaded and Fe loaded carbons was designed and tested. The test results indicate that the composite sorbent had improved performance in the removal of individual sulfur compound. A linear programming model was used to design a composite sorbent optimized to minimize the required sorbent mass based on a 1-kW scale fuel cell system service target. Validation tests showed that the optimized sorbent required less of the individual modified carbon components than when they were individually used for the same sulfur removal target.  相似文献   

17.
孙学锋  汪优华 《当代化工》2013,(12):1765-1767
天津石化在炼制高硫原油时,焦化液化气胺脱后总硫高达16000mg/Nm3,导致原焦化液化气脱硫醇装置的产品不合格,产品总硫在1000mg/Nm3左右,在作为民用燃料销售时需要掺兑硫含量较低的催化液化气或降低价格,严重影响了天津石化的经济效益。为此,中石化炼油事业部组织SEI、天津石化和河北精致有限公司进行了长达2年的攻关和优化改造,采用液化气深度脱硫专利技术,成功解决了焦化液化气硫形态复杂、脱除难的问题,脱硫后焦化液化气总硫降低到100mg/Nm3以下,达到通过气体分馏装置生产合格丙烯的要求,成为中石化焦化液化气深度脱硫和利用的首个成功案例。  相似文献   

18.
Hydroxyl‐terminated polybutadiene/acrylonitrile (HTBN) polymer material was selected for deep desulfurization of liquefied petroleum gas (LPG) according to the solubility parameter method, and then crosslinked HTBN membranes were prepared, in which asymmetric polyacrylonitrile (PAN) membranes prepared with phase inversion method acted as the microporous supporting layer in the flat‐plate composite membrane. The different function compositions of composite membranes were characterized by reflection FTIR in order to investigate the crosslinking reaction. The surface and section of composite membranes were investigated by scanning electron microscope (SEM). The composite membranes prepared in this study were used in LPG for deep desulfurization. Effects of amount of HTBN and operation pressure on the desulfurization efficiency of LPG were investigated experimentally. Experiment results demonstrated that with the membrane having a HTBN layer of 11 μm, permeability parameter of methyl mercaptan came to 17,002 Barrer and that of hydrocarbon came to 504 Barrer at 30 wt % of HTBN and 0.25 MPa, which showed that the membrane used to desulfurization in LPG can achieve high‐removal efficiency. These results demonstrated that the membrane separation method could be significant in practical application for deep desulfurization of LPG. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号