首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes an investigation on CuO and CuO-ZnO catalysts supported on CeO2 and CeO2-La2O3 oxides, which were designed for the low temperature water-gas shift reaction (WGSR). Bulk catalysts were prepared by co-precipitation of metal nitrates and characterized by energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), surface area (by the BET method), X-ray photoelectron spectroscopy (XPS), and in situ X-ray absorption near edge structure (XANES). The catalysts' activities were tested in the forward WGSR, and the CuO/CeO2 catalyst presented the best catalytic performance. The reasons for this are twofold: (1) the presence of Zn inhibits the interaction between Cu and Ce ions, and (2) lanthanum oxide forms a solid solution with cerium oxide, which will cause a decrease in the surface area of the catalysts. Also the CuO/CeO2 catalyst presented the highest Cu content on the surface, which could influence its catalytic behavior. Additionally, the Cu0 and Cu1+ species could influence the catalytic activity via a reduction-oxidation mechanism, corroborating to the best catalytic performance of the Cu/Ce catalyst.  相似文献   

2.
María Roxana Morales 《Fuel》2008,87(7):1177-1186
Mixed oxides of manganese and copper with different wt% of copper have been prepared and evaluated in ethanol combustion. The co-precipitation method used for the synthesis of MnxCuy mixed oxides is adequate to obtain catalysts with excellent catalytic performance in combustion reactions. Catalysts were characterized by means of XRD, FT-IR, TPR and O2-TPD. A small amount of copper prevents manganese oxide reaching a crystalline structure. This poor crystalline structure of manganese oxide may improve the existence of oxygen vacancies giving a best performance in ethanol combustion to CO2. When the copper content increases, an extent of solid state reaction between Cu and Mn is favored and the partial oxidation of ethanol becomes more important. The incorporation of manganese into incomplete spinel structure diminishes CO2 yield.  相似文献   

3.
The Cu/ZnO/Al2O3 catalysts, prepared by co-precipitation method, have been modified by adding small amount of Mn, Mg, Zr, Cr, Ba, W and Ce oxides using design of experiments (1/16 full factorial design). The structure and morphology of catalysts were studied by X-ray diffraction (XRD) and BET. Performance of the prepared catalysts for CO/CO2 hydrogenation to methanol was evaluated by using a stainless steel fixed-bed reactor at 5 MPa and 513 K. The oxide additives were found to influence the catalytic activity, dispersion of Cu, Cu crystallite size, surface composition of catalyst and stability of catalysts during their operations. The results showed that the Mn and Zr promoted catalysts have high performance for methanol synthesis from syngas.  相似文献   

4.
The present work deals with the synthesis of nanostructured Co–MgO mixed oxides with different weight ratios of cobalt by a facile co-precipitation method as a catalyst for low-temperature CO oxidation. The prepared samples were characterized by X-ray diffraction (XRD), N2 adsorption/desorption (BET), Fourier transform infrared spectroscopy (FTIR), and transmission and scanning electron microscopies (TEM and SEM) techniques. The results revealed that inexpensive cobalt–magnesium mixed metal oxide nanoparticles have a high potential as catalyst in low-temperature CO oxidation. The Co–MgO mixed oxide with 30 wt.% cobalt had the highest activity. The results showed that the catalysts pretreated under O2-containing atmosphere possessed higher activity compared to the catalyst pretreated under H2 atmosphere. Co–MgO catalyst showed a good repeatability in reaction condition. The stability test exhibited that the Co–MgO mixed oxides were highly stable for CO oxidation over a 30 h time on stream in the feed gas containing a high amount of moisture and CO2.  相似文献   

5.
Copper manganese oxides (Cu–Mn oxides) were prepared by coprecipitation method and characterized by several techniques, such as X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and Temperature-programmed reduction (TPR). Catalytic activities of the Cu–Mn oxides were tested by the oxidation of toluene with molecular oxygen in liquid phase and solvent-free conditions. The molar ratio of Cu:Mn in catalyst was optimized to be 1:1 and thus the corresponding crystalline material was designated as Cu1.5Mn1.5O4.  相似文献   

6.
Copper manganese oxides (Cu–Mn oxides) were prepared by coprecipitation method and characterized by several techniques, such as X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and Temperature-programmed reduction (TPR). Catalytic activities of the Cu–Mn oxides were tested by the oxidation of toluene with molecular oxygen in liquid phase and solvent-free conditions. The molar ratio of Cu:Mn in catalyst was optimized to be 1:1 and thus the corresponding crystalline material was designated as Cu1.5Mn1.5O4.  相似文献   

7.
《Ceramics International》2020,46(10):16480-16492
Transition metal oxide nanoparticles (CuO, ZnO & Fe2O3) and mixed metal oxides CuO. ZnO.Fe2O3 were fabricated by facile co-precipitation approach for photocatalytic treatment of organic dyes. The structural features, phase purity, crystallite size and morphology of individual and mixed metal oxides were analysed by X-rays diffraction patterns (XRD) and scanning electron microscopic (SEM) analysis. Electrical behaviour of CuO, ZnO, Fe2O3 and mixed metal oxides CuO. ZnO.Fe2O3 was explored by current-voltage (I-V) measurements. Functional groups present in the synthesized metal oxides were investigated by Fourier transform infrared spectroscopy (FTIR) which ensures the existence of M-O functional groups in the samples. The optical bandgap analysis was carried out by UV–visible spectroscopic technique which revealed that the blend of three different transition metal oxides reduced the bandgap energy of mixed metal oxides. The reason behind this reduced bandgap energy is formation of new electronic state which arises due to the metal-oxygen interactions. Moreover, the nanocomposites of CuO.ZnO.Fe2O3 with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) were prepared to study the effect of the carbonaceous materials on the rate of photodegradation. These carbonaceous nanomaterials have plethora properties which can bring advancement in sector of photocatalytic treatment of wastewater. The photocatalytic experiments were performed using methylene blue (MB) as standard dye for comparative study of metal oxides and their composites with rGO and CNTs. The percentage degradation of methylene blue (MB) by nanocomposite CuO.ZnO.Fe2O3/rGO is 87% which is prominent among all samples. This result ascribed the photocatalytic aspects of reduced graphene oxide along with mixed metal oxides.  相似文献   

8.
《Catalysis communications》2003,4(11):591-596
Gravimetric temperature programmed oxidation was used to study the combustion of a soot mixed with various metal oxides and their supported metal chloride catalysts. It is found that the catalytic effect of metal oxide on soot combustion varies depending on property of oxides. CuO and Cr2O3 are better catalysts. Addition of some chloride salts (FeCl3, NaCl and KCl) increases the catalytic activity and KCl exhibits the highest promoting effect by reducing the Tmax for about 200 °C. Metal chlorides can also show a synergistic effect on soot combustion. FeCl3–KCl/CuO can reduce the Tmax of carbon oxidation from 780 to 500 °C. Investigation also demonstrates that FeCl3–KCl/CuO is effective for NO reduction at low temperatures.  相似文献   

9.
Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts   总被引:4,自引:0,他引:4  
Mn-Cu mixed oxides were prepared by co-precipitation varying the aging time for 4, 18 and 24 h. The catalytic performance in propane and ethanol total oxidation on these samples was better than on Mn2O3 and CuO pure oxides. The increase of the aging time enhanced the activity and the selectivity to CO2. The nature and disposition of the phases forming the catalytic system as well as the effect of the precipitated aging time was determined by means of specific surface area measurements, X-ray diffractometry (XRD), infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (TPR) and temperature programmed desorption of oxygen (O2-TPD). The catalytic behaviour seems related to the existence of a Cu1.5Mn1.5O4 mixed phase and the easier reducibility of the catalysts.  相似文献   

10.
CuMn-spinel oxide (CuMn(S)) and non-spinel CuMn (CuMn(NS)) oxide have been obtained by calcining the same precursor at 900 °C and 300 °C, respectively. CuMn(S) was composed of Cu1.5Mn1.5O4 spinel and Mn3O4, while CuMn(NS) consisted of CuO and Mn3O4. XRD, EXAFS, and TEM measurements of the samples reduced in hydrogen revealed that both CuMn(S) and CuMn(NS) were reduced to Cu metal dispersed on MnO and that the particle size of Cu metal from the CuMn(S) was smaller than that from CuMn(NS). In methanol steam reforming, the spinel derived catalyst showed higher activity than the non-spinel due to the higher dispersion of the Cu metal.  相似文献   

11.
采用水热法制备出一系列铜锰纳米复合氧化物,考察了样品选择催化氧化苯甲醇的性能。结果表明,铜锰摩尔比小于1时产物主要是尖晶石型的Cu1.5Mn1.5O4,大于1时产物主要是Cu0.451Mn0.549O2,等于1时则是二者共存,所有样品均为厚度约10 nm的纳米片。铜含量增加时催化剂的还原温度降低,Cu0.451Mn0.549O2的催化活性比Cu1.5Mn1.5O4好。反应温度300℃,苯甲醇质量空速3.13 h-1时,苯甲醇转化率和苯甲醛选择性分别为94.14%和83.73%。  相似文献   

12.
This study presents detailed experimental and theoretical investigation of manganese-based metal oxides, MnMOx (M: Fe, Ni, Cu) as potential catalysts for the low-temperature toluene oxidation. The first part of the paper deals with the detailed characterization of the prepared catalysts and testing of their catalytic activity and stability in the fixed-bed reactor. The MnFeOx exhibited superior and stable catalytic activity for toluene oxidation (T90 = 419–446 K), comparable with the activity of the commercial Pt–Al2O3 catalyst (T90 = 393–423 K). Among the studied catalysts the following order of catalytic activity was determined: MnFeOx > MnNiOx ≈ MnCuOx > MnOx. The one-dimensional (1D) pseudo-homogeneous model was applied to describe behavior of the fixed bed reactor for the low temperature toluene oxidation over prepared MnFeOx catalysts. The second part of the paper is focused on theoretical investigation of toluene interaction on the surface of the single metal oxides (Mn2O3, MnO2, Fe2O3, NiO and CuO) in the oxygen atmosphere using the ReaxFF method, since they were individual dominant phases in the prepared catalysts. A good correlation between the predicted binding energy of toluene adsorption on the surface of studied metal oxide phases and experimentally determined catalytic activities was observed.  相似文献   

13.
The activity and stability of Au/Fe2O3–MOx catalysts (M = Zr, Mg, Ca, Ni, La, Cu, Zn, Al, Ba, Cr, Co, Ce, Mo, Bi, Ti, Mn) in water-gas shift reaction were investigated extensively. The WGS activity and stability of Au/Fe2O3 is improved significantly upon addition of ZrO2 and to a lesser extend MgO, CaO, NiO, La2O3, Cr2O3, CuO. In contrast, Bi, Ti and Mn oxides seriously decrease the catalytic activity while additions of Zn, Al, Ba, Co, Ce and Mo oxides do not influence evidently the catalytic activity and its stability. Based on the characterization using the methods of BET-surface area and pore structure XRF, XRD, and H2–TPR for some of as-prepared and spent samples, it could be concluded that the catalytic activity of gold catalysts supported on composite oxide of Fe2O3–MOx depends not only on the dispersion of the gold particles but also on the reduction property of composite oxide supports, regardless of the fluctuation of gold loading and some change of specific surface area and pore structure due to introduction of the modifying metal oxides. The improvement of catalytic stability may be attributed to the comparative stabilization of high dispersion of gold particles and uneasily sintering of Fe3O4 crystallites during the catalytic operation. However, the chemical (electronic) effects exerted by the modifying addition of metal oxides on the catalytic performance of gold catalyst may not be ruled out.  相似文献   

14.
Co3O4 and Mn3O4 nanoparticles were successfully impregnated on SBA-15 mesoporous silica. A high dispersion of these metal oxide particles was achieved while using a “two-solvents” procedure, allowing a proper control of the metal oxides loading (7 wt%) and size (10–12 nm). These Co3O4 and Mn3O4 supported oxides on SBA-15 were characterised by means of XRD, BET and TEM techniques. The influence of the nature of the silica support was investigated in terms of porosity and specific surface area. Since, an improved catalytic activity was achieved over SBA-15 mesoporous silica; it appears that its organised porous meso-structure creates a confinement medium which permits a high dispersion of metal oxide nanoparticles. Supported Co3O4/SBA-15 (7 wt%) showed the highest catalytic performance in the combustion of methane under lower explosive limit conditions, comparable to perovskites. These materials become therefore novel efficient combustion catalysts at low metal loading.  相似文献   

15.
《Catalysis communications》2009,10(15):2570-2573
The aerobic oxidation of aromatic alcohol on alkali metal promoted Mn/C catalysts has been investigated. A dramatic improvement of the oxidation activity can be observed when the Mn/C catalyst is modified with potassium ions. Characterizations of Raman and X-ray absorption fine structure (XAFS) evidence that potassium ions induce a large local distortion to Mn–O octahedrons in supported manganese oxides with coexistence of Mn2+ and Mn3+, which has been suggested to be a vital factor to enhance the activation of O2 for the oxidation of benzylic alcohol.  相似文献   

16.
The catalytic combustion of toluene over Ni–Mn mixed complex supported on industrial cordierite was investigated. The catalysts were prepared by the wet impregnation method and characterized by using the Brunauer Emmett Teller (BET), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Transmission Electron Microscope (TEM) and X-ray fluorescence (XRF). The catalytic activity toward the complete oxidation of toluene to CO2 and H2O strongly depended on the molar ratio of Ni/Mn, loading amount of Ni–Mn oxides, and calcination temperature. All the results above indicated that the Ni–Mn complex oxide catalyst calcined at 400 °C with 0.5 mol ratio of Ni/Mn, 10 wt.% loading amounts, and showed the highest activity as complete oxidation of toluene.  相似文献   

17.
Catalytic performance of a series of Ga2O3–Al2O3 mixed oxides prepared by alcoholic-coprecipitation method for the dehydrogenation of propane in the presence of CO2 was investigated. It is shown that the combination of Ga and Al oxides greatly improved the performance of the Ga2O3-based materials for catalytic dehydrogenation of propane, with the highest performance attainable at a Ga2O3–Al2O3 catalyst with a 20 mol% aluminum content. While the same tendency was observed for the specific activity normalized by BET surface area, significantly enhanced stability was achieved for Ga2O3–Al2O3 with higher aluminum content. X-ray diffraction (XRD) revealed that a homogeneous spinel-type Ga2O3–Al2O3 solid solution is uniformly formed by substitution of Ga3+ for Al3+ in the Al2O3 lattice. The enhanced activity of Ga2O3–Al2O3 mixed oxides was accounted for by the abundance of surface weak acid sites due to the synergetic interaction between Ga2O3 and Al2O3 in the solid solution systems.  相似文献   

18.
A series of Co–Cu composite oxides with different Co/Cu atomic ratios were prepared by a co-precipitation method. XRD, N2 sorption, TEM, XPS, H2-TPR, CO-TPR, CO-TPD and O2-TPD were used to characterize the structure and redox properties of the composite oxides. Only spinel structure of Co3O4 phase was confirmed for the Co–Cu composite oxides with Co/Cu ratios of 4/1 and 2/1, but the particle sizes of these composite oxides decreased evidently compared with Co3O4. These composite oxides could be reduced at lower temperatures than Co3O4 by either H2 or CO. CO and O2 adsorption amounts over the composite oxides were significantly higher than those over Co3O4. These results indicated a strong interaction between cobalt and copper species in the composite samples, possibly suggesting the formation of Cu x Co3?x O4 solid solution. For the preferential oxidation of CO in a H2-rich stream, the Co–Cu composite oxides (Co/Cu = 4/1–1/1) showed distinctly higher catalytic activities than both Co3O4 and CuO, and the formation of Cu x Co3?x O4 solid solution was proposed to contribute to the high catalytic activity of the composite catalysts. The Co–Cu composite oxide was found to exhibit higher catalytic activity than several other Co3O4-based binary oxides including Co–Ce, Co–Ni, Co–Fe and Co–Zn oxides.  相似文献   

19.
A series of copper and manganese oxides modified SBA-15 mesoporous silicas with different composition was prepared by incipient wetness impregnation with the corresponding nitrate precursors and compared with the analogous materials supported on conventional SiO2. Nitrogen physisorption, XDR, FTIR, UV–Vis and temperature programmed reduction with hydrogen were used for samples characterization. Their catalytic activity was tested in ethyl acetate oxidation and methanol decomposition. The ordered porous structure of the support facilitates the interaction between different metal oxide nanoparticles and increases their dispersion due to the formation of mixed oxide phase. The ethyl acetate oxidation on SBA-15 binary materials is suppressed due to the lower accessibility of the metal oxide particles, located deeply into the micro-meso pores of the support. The reaction medium which forms during the methanol decomposition provides the reduction/decomposition transformations with the mixed oxide phase. The final phase composition of finely dispersed Cu/CuO and MnOx particles stabilizes in a highly dispersed state into the porous matrix of SBA-15 support and increases the catalytic activity in methanol decomposition due to the appearance of synergistic effect between them.  相似文献   

20.
Molybdenum based mixed oxide containing Mo0.65V0.25W0.10 was investigated for the partial oxidation of methanol. The structural property and catalytic activity of the mixed oxide catalyst was studied by surface area (BET), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infra-red spectroscopy (FTIR) and X-ray diffraction (XRD). The thermal activation of the catalyst resulted increase in the conversion of methanol and the selectivity to formaldehyde. The thermal activation of the MoVW mixed oxide in nitrogen atmospheres induces partial crystallization of a Mo5O14-type oxide at 813 K. The SEM images of the thermally activated catalyst show needle like particles. These particles were agglomerates of platelet-like crystallites of a few hundreds of nanometers in size. SEM and EDX techniques show that the mixed oxide is characterized by an inhomogeneous elemental distribution on the length scale of a few microns. XRD of the thermally activated catalyst showed a nanocrystalline material identified as a mixture of Mo5O14, MoO3 and MoO2-type MoVW oxides. The catalytic activity of the MoVW mixed oxide show a good conversion of methanol and selectivity to formaldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号