首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
通过静电纺丝法制备出一维纳米Li Ni1/3Co1/3Mn1/3O2纤维,根据扫描电子显微镜(SEM)、X射线衍射(XRD)、充放电实验,循环伏安法和交流阻抗法对纳米纤维的形貌、晶体结构和电化学性能进行研究.结果表明,纳米纤维的直径在150~300 nm之间,且具有典型的α-Na Fe O2层状结构;所制备的Li Ni1/3Co1/3Mn1/3O2纳米纤维在0.5 C(85 m A/g)的倍率下循环30次容量保持率达到了94.1%;在倍率分别为0.1 C、0.2 C、0.5 C、1.0 C、2.0 C和0.2 C的充放电测试中,其比容量分别达到了157 m Ah/g、144 m Ah/g、134 m Ah/g、125 m Ah/g、115 m Ah/g和141 m Ah/g;在CV和EIS测试中,材料表现出优异的可逆性和循环稳定性.由于具有特殊的一维形貌,Li Ni1/3Co1/3Mn1/3O2纳米纤维表现出优异的电化学性能.  相似文献   

2.
通过静电纺丝法制备出一维纳米LiNi1/3Co1/3Mn1/3O2纤维,根据扫描电子显微镜(SEM)、X射线衍射(XRD)、充放电实验,循环伏安法和交流阻抗法对纳米纤维的形貌、晶体结构和电化学性能进行研究.结果表明,纳米纤维的直径在150~300 nm之间,且具有典型的α-NaFeO2层状结构;所制备的LiNi1/3Co1/3Mn1/3O2纳米纤维在0.5 C(85 mA/g)的倍率下循环30次容量保持率达到了94.1%;在倍率分别为0.1 C、0.2 C、0.5 C、1.0 C、2.0 C和0.2 C的充放电测试中,其比容量分别达到了157 mAh/g、144 mAh/g、134 mAh/g、125 mAh/g、115 mAh/g和141 mAh/g;在CV和EIS测试中,材料表现出优异的可逆性和循环稳定性.由于具有特殊的一维形貌,LiNi1/3Co1/3Mn1/3O2纳米纤维表现出优异的电化学性能.  相似文献   

3.
以碳酸盐共沉淀法合成了Ni1/3Co1/3Mn1/3CO3前驱体,然后以Ni1/3Co1/3Mn1/3CO3和LiOH·H2O为原料,合成出了层状锂离子电池正极材料Li Ni1/3Co1/3Mn1/3O2.通过XRD,SEM和电化学测试对Li Ni1/3Co1/3Mn1/3O2材料的结构、形貌及电化学性能进行了测试和表征.结果表明,800℃烧结12 h所合成的样品粒度大小分布比较均匀,以0.2 C充放电,其首次放电容量为153 mAh·g-1,循环30次后容量为140 mAh·g-1.  相似文献   

4.
以KCl为熔盐,采用熔盐法合成了锂离子电池正极材料LiMn1/3Ni1/3Co1/3O2,扫描电子显微镜(SEM)显示此方法制备产物具有较好的晶形,颗粒较均匀.XRD表征结果显示产物为层状结构,充放电测试结果显示出材料在3.6 V平台附近有较大的可逆容量.在900℃时保温8 h时合成的LiMn1/3Ni1/3Co1/3O2具有较好的电化学性能,制作成AA电池,在2.75~4.2 V之间进行充放电测试,在1 C倍率下放电,LiMn1/3Ni1/3Co1/3O2的初始放电容量可达132.9 mAh/g,循环50多次后容量仍为124.6 mAh/g,容量保持率为93.75﹪.  相似文献   

5.
采用喷雾干燥法制备Li Ni1/3Co1/3Mn1/3O2正极材料,溶胶—凝胶法制备Al F3包覆Li Ni1/3Co1/3Mn1/3O2正极材料。通过XRD、SEM、电化学测试等对Al F3包覆Li Ni1/3Co1/3Mn1/3O2正极材料的结构、形貌和电化学性能进行研究。结果表明:Al F3包覆Li Ni1/3Co1/3Mn1/3O2正极材料为α-Na Fe O2型结构,属空间群。样品为类球形,颗粒大小均匀。包覆后的样品首次放电容量略有降低,但是显著提高了其循环性能,其首次充放电容量为148 m A·h/g,25次充放电循环后容量保持率为93.9%。  相似文献   

6.
采用共沉淀-高温固相法制备LiNi0.6Co0.1Mn0.3O2锂离子正极材料,并使用X 射线衍射仪(XRD)和扫描电镜(SEM)技术分别表征其结构和形貌.然后将所得LiNi0.6Co0.1Mn0.3O2正极材料组装成扣式电池,并表征其电化学性能,探讨烧结温度和锂配量对其电化学性能的影响.结果表明:所得LiNi0.6Co0.1Mn0.3O2正极材料的放电比容量随烧结温度的升高而增大,且在900℃时表现出最佳的电化学性能.室温下,1C倍率下,锂配量(n(Li)/n(Ni+ Co+ Mn)=1.09)时,正极材料的首次放电容量为143.7 mAh/g,50次循环后,正极材料的放电比容量仍有141.3 mAh/g,容量保持率为98.3%.  相似文献   

7.
层状Ni-Mn基锂离子电池正极材料进展   总被引:1,自引:1,他引:1  
层状Ni—Mn基锂离子电池正极材料具有层状结构镍酸锂(LiNiO2)的高比容量以及尖晶石型结构锰酸锂(LiMn2O4)的高安全性、低价格等特点,是最有可能代替或部分代替LiCoO2的新型正极材料用于小型锂离子电池,同时也可望用作低成本、高安全性和大容量动力型锂离子电池的正极材料。本文综述了层状Li—Ni—Mn—O系化合物和LiNi1/3Mn1/3Co1/3O2的合成工艺、结构特点和电化学性能,阐述了层状Ni—Mn基锂离子电池正极材料的发展、研究开发现状和应用前景。  相似文献   

8.
以碳酸盐为沉淀剂,采用共沉淀法合成Ni1/3Co1/3Mn1/3CO3前驱体,再按照一定的锂配比将其烧结合成层状Li(Ni1/3Co1/3Mn1/3)O2。通过SEM及电性能测试仪等方法,研究了碳酸盐前驱体的合成条件,考察了碳酸盐前驱体的振实密度与合成时pH值、溶液浓度以及反应时间的关系。经过实验分析,在pH=8、溶液浓度C=2mol.L^-1、反应时间t=12-13h时,合成的碳酸盐前驱体Ni1/3Co1/3Mn1/3CO3振实密度达到最高值0.98g.cm^-3。  相似文献   

9.
以KCl为熔盐,采用熔盐法合成了锂离子电池正极材料LiMn1/3Ni1/3Co1/3O2,扫描电子显微镜(SEM)显示此方法制备产物具有较好的晶形,颗粒较均匀.XRD表征结果显示产物为层状结构,充放电测试结果显示出材料在3.6 V平台附近有较大的可逆容量.在900℃时保温8 h时合成的LiMn1/3Ni1/3Co1/3...  相似文献   

10.
采用共沉淀法合成LiNi0.5Mn0.5O2正极材料.采用X射线衍射(XRD)和扫描电镜(SEM)表征合成材料的结构和形貌.研究不同Li/(Mn+Ni)摩尔比、不同焙烧制度、不同化成制度对LiNi0.5Mn0.5O2的电化学性能的影响.结果表明,当Li/(Mn+Ni)摩尔比1.08、一次焙烧温度为500℃,二次焙烧温度为850℃下焙烧得到的材料电化学性能最佳.  相似文献   

11.
解决镍基正极材料LiNi0.8Co0.1Mn0.1O2的电化学循环稳定性和高温循环性能是其产业化推广应用的关键。研究了掺杂铌改性高镍正极材料,优化材料的电化学性能,提升循环稳定性。首先以硫酸盐为原料,在N2保护气氛下,采用共沉淀法合成三元球形Ni0.8Co0.1Mn0.1(OH)2前驱体,通过高温固相反应与LiOH·H2O,Nb2O5合成Li(Ni0.8Co0.1Mn0.11-xNbxO2(x=0,0.01,0.02,0.03)系列正极材料。X射线衍射结果表明,Nb5+离子可少量进入正极材料晶格,并在正极材料表面形成化学稳定性好的Li3NbO4。当x=0.02时,在室温25 ℃,电压2.75~4.2 V,0.2 C倍率下首次放电比容量为172.9 mAh/g,100次循环后容量保持率为97.47%,在50 ℃,0.5 C倍率下循环20次容量基本不变,平均放电比容量为183.7 mAh/g,且该样品具有较好的倍率性能。   相似文献   

12.
采用共沉淀法合成Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体,将前驱体和LiOH混合均匀后经高温煅烧合成了锂离子电池正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2,并对其进行电化学性能检测。试验表明,制备的电池在电压2.8~4.3V(vs.Li/Li+)区间内,0.1C倍率下的首次库伦效率为88.4%;在1C倍率下循环100次后,放电比容量为157.7mAh/g,容量保持率为96.6%。  相似文献   

13.
以共沉淀法制备的Ni-Mn包覆Co_3O_4前驱体和Li_2CO_3为原料,通过高温固相法制得了具有核壳结构的锂电池正极材料Li(Co_(0.9)Ni_(0.05)Mn_(0.05))O_2.用扫描电镜(SEM)、X射线能谱仪(EDS)、X射线衍射(XRD)和充放电测试表征了样品的形貌、晶体结构和电化学性能.结果表明,所制备的核壳结构Li(Co_(0.9)Ni_(0.05)Mn_(0.05))O_2具有良好的电化学性能,在3.0~4.5 V和3.0~4.6 V,0.2 C下首次放电容量分别达到180.5 m A·h·g~(-1)和201.3 m A·h·g~(-1),在1 C下,循环50周后容量保持率分别为89.3%和63.3%.  相似文献   

14.
采用碳酸盐共沉淀法合成Li1+xNi0.6Co0.2Mn0.2O2Fx正极材料,研究了不同含量的Li、F复合掺杂对LiNi0.6Co0.2Mn0.2O2样品的晶型结构、形貌以及电化学性能的影响.研究结果表明:Li、F复合掺杂未改变LiNi0.6Co0.2Mn0.2O2样品的层状结构;掺杂后的样品颗粒细化;电化学循环性能和电极过程的可逆性明显得到提高.掺杂量x=0.06时,Li1+xNi0.6Co0.2Mn0.2O2Fx样品的首次充放电容量分别为168,160 mA·h/g,循环50次后容量为153 mA·h/g.  相似文献   

15.
以自制Ni0.4Co0.2Mn0.4(OH)2前驱体和Li_2CO_3为原料,在空气气氛下采用固相烧结工艺制备了LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2锂离子电池正极材料。通过SEM和XRD等手段对材料烧结前后形貌与结构进行表征,并测试了烧结后锂离子电池正极材料的电化学性能。结果表明,Ni0.4Co0.2Mn0.4(OH)2前驱体具有良好的片状嵌入结构,且烧结制备的LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料混排因子c/a=4.967 3,阳离子混排因子I(003)/I(104)=1.25、I(006+102)/I(101)=0.333、I(018)/I(110)=0.87,表明LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2具有良好的层状结构。在2.5~4.6V、0.2C和0.5C下,LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料的首次放电比容量分别为166和154mAh/g,循环80次后容量分别保持为111和100mAh/g,具有良好的电化学性能。  相似文献   

16.
利用共沉淀合成的锰镍氢氧化物前躯体,采用Si掺杂合成Li[Li0.15Mn0.575Ni0.275]1-xSixO2(0≤x≤4%)正极材料.用X射线衍射和扫描电镜对合成的粉末样品进行了表征,研究了材料的电化学性能.通过掺杂样品的晶胞参数及电化学性能研究发现:少量的Si4+掺杂可有效提高材料的循环性能;随掺杂量的增大,晶格畸变增大,半高宽变大;其中掺量x=1%的材料电化学性能最佳,4.2 V首次放电容量为146.7 mAh/g,经200次循环放电容量仍保持在135.7 mAh/g,容量保持率为92%.  相似文献   

17.
利用共沉淀合成的锰镍氢氧化物前躯体,采用Si掺杂合成Li[Li0.15Mn0.575Ni0.275]1-xSixO2(0≤x≤4%)正极材料.用X射线衍射和扫描电镜对合成的粉末样品进行了表征,研究了材料的电化学性能.通过掺杂样品的晶胞参数及电化学性能研究发现:少量的Si4+掺杂可有效提高材料的循环性能;随掺杂量的增大,晶格畸变增大,半高宽变大;其中掺量x=1%的材料电化学性能最佳,4.2 V首次放电容量为146.7 mAh/g,经200次循环放电容量仍保持在135.7 mAh/g,容量保持率为92%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号