首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
滚转阻尼力矩导数是影响减旋效果的重要参数。采用求解定常流场的计算流体力学方法,对亚跨声速阶段带减旋片翼翼身组合体的滚转阻尼特性进行数值模拟。滚转阻尼力矩导数数值模拟的结果与试验值一致性较好。通过数值结果分析解释了由于滚转引起的弹翼气流攻角的变化,表面压力的变化,以及附加升力导致的滚转阻尼力矩的形成原因,展示了薄翼片弯折的位置,同时从流场的角度展示了滚转对弹体附近气体流动的影响,以及滚转引起的表面流线的弯曲,螺旋状尾迹。  相似文献   

2.
为提高尾翼弹射击精度,对高速箭弹滚转气动特性进行研究。建立火箭弹简化模型,对不同翼片斜置角 的火箭弹进行数值模拟,采用有限体积法对空间进行离散,通过多参考系模型模拟火箭弹的定常旋转,得出火箭弹 的滚转阻尼力矩导数和平衡转速,并分别对有、无旋转条件下的气动特性进行分析。计算结果表明:火箭弹升力系 数随攻角的增大而增大,随翼片斜置角的增大变化不大;滚转阻尼力矩导数在高空时会骤减,平衡转速随着马赫数 的增大而增大。  相似文献   

3.
格栅翼组合体的超音速气动特性研究   总被引:2,自引:0,他引:2  
介绍了超音速下格栅翼组合体的气动特性实验研究情况 .通过对两种格栅翼翼身组合体气动力实验结果的分析 ,以及与平板翼翼身组合体气动力数据的比较 ,阐述了格栅翼的气动特性 .结果显示格栅翼的阻力比平板翼的大 ,网格数越多阻力越大 ,在 M=2 .52 1 0时 ,斜置密网格格栅翼的升力大于平板翼的升力 ,削尖格栅翼的边框可以显著地减少格栅翼的阻力  相似文献   

4.
为了研究某无翼式布局制导火箭弹进行俯仰操纵时非线性气动特性对弹箭操纵性的影响,通过模型风洞试验和数值计算相结合的方法,分析了不同马赫数、舵偏角和攻角等因素对该火箭弹气动特性的影响。对模型进行超声速风洞试验,试验结果表明,俯仰操纵负舵偏角时俯仰力矩系数导数随攻角先增大后减小,正舵偏角时俯仰力矩系数导数随攻角先减小后增大。采用ANSYS FLUENT对不同工况下该弹气动特性进行数值计算,计算结果表明,得到的俯仰力矩与风洞实验结果吻合较好,最大误差仅为4.6%。各部件气动特性分析结果表明:弹身的压心在负舵偏角时前移,正舵偏角时后移; 上尾舵受弹身干扰影响法向力效率降低; 负舵偏角时下尾舵的法向力系数导数随攻角减小,正舵偏角时下尾舵的法向力系数导数随攻角增大; 各部件共同作用下弹箭气动特性呈非线性。  相似文献   

5.
本文介绍战术弹纵横向气动特性的计算方法,其中用吸力比拟法计算翼的非线性力,用冲击流比拟法计算体的非线性力。所谓冲击流比拟,就是有攻角旋成体的横向流动沿轴向的发展,与从静止突然开始运动的二维圆柱绕流随时间的发展相似。部件之间的相互干扰将采用干扰因子和当量攻角法计算。给出了导弹上的自由涡轨迹和自由涡产生的翼面上下洗角分布。本方法适用于计算单独弹身、翼-身组合体、身-尾组合体和全弹在亚、超音速范围内的纵横向气动特性,其攻角一般在0°~20°之内,即弹翼上的涡不发生破裂,弹身体涡保持在对称性的攻角范围之内。此外,导弹可以绕其纵轴滚转,弹翼或尾翼呈“+”字形或"×”形。操纵面是全动弹翼或全动尾翼,并可作俯仰、偏航和滚转操纵。不同外形战术弹的计算结果表明,其纵向气动特性与实验值较符合,横向气动特性误差稍大。  相似文献   

6.
极小展弦比翼身组合体在大攻角飞行时会形成非对称涡,产生很大的侧向力.为减小侧向力,研究了前体小翼对极小展弦比翼身组合体气动特性的影响.采用有限体积法对极小展弦比翼身组合体流场进行了数值模拟.对比了有无前体小翼翼身组合体气动参数随攻角变化趋势以及空间流场结果,重点分析了前体小翼对侧向力的影响.结果表明,前体小翼的存在可以显著降低全弹的侧向力,并且对全弹的零阻和法向力影响很小.  相似文献   

7.
为研究极小展弦比弹翼的气动特性,文中设计了展弦比分别为0.3和3.0的极小展弦比翼面和常规三角翼面,采用CFD数值模拟方法分析比较了极小展弦比翼身和三角翼身的气动特性.研究结果表明,极小展弦比翼身相比三角翼身具有较小的轴向力和诱导滚转力矩,但是在大攻角时产生较大的侧向气动力;极小展弦比翼的翼展很小,弹身体涡与翼涡之间产生复杂的相互干扰,影响全弹气动特性.  相似文献   

8.
为改善栅格翼的水动力性能,基于流动不分离理论设计了负压梯度翼型,并将其运用于栅格翼的设计; 数值模拟研究了该翼型与NACA0015翼型在一定的空化数和攻角条件下的升阻及压力分布特性; 探究了3种叶片间距的负压梯度翼型栅格翼在不同攻角下的升阻、压力及空泡几何形状。结果表明,含攻角时,该翼型对应的临界空化数要比NACA0015的小,但二者升阻系数基本一致; 小攻角情况下,栅格翼叶片数量增加时升力会趋于一常值,但阻力会不断增加; 大攻角情况下,叶片数量的增加会导致升力和阻力均明显增加。对于同一叶片间距的栅格翼,攻角越大,栅格翼叶片由上至下空泡的长度和厚度减小的速率越大。对于不同叶片间距的栅格翼,叶片数量越大,各个叶片的压力干扰越剧烈,压差阻力越大,导致升阻比降低。同时,剧烈的压力干扰会导致栅格翼的空泡长度增加。因此,在满足水动力特性要求时,基于该文翼型设计负压梯度翼型栅格翼应尽量减少叶片数量。  相似文献   

9.
本文给出了亚、超音速弧翼的滚转及偏航阻尼力矩特性,并从理论上证明了零攻角时有厚度弧翼在亚、超音速绕流时正、反向滚转的必然性。  相似文献   

10.
低速旋转尾翼式弹箭气动特性数值研究   总被引:2,自引:0,他引:2  
为了研究低速旋转对尾翼式弹箭气动特性的影响,采用三维非定常N-S方程并结合滑移网格技术,在小攻角和全马赫数下,对某尾翼弹在低转速状态下的绕流流场进行了数值模拟。以美国陆-海军动导数计算标模验证该文算法的有效性。结果表明该方法有较高的精确度。由不同马赫数、转速和滚转角条件下的计算结果发现:纵向气动特性(即升力、阻力、俯仰力矩)不随转速而变化,平均滚转力矩系数和转速为定比例关系,平均马格努斯力系数随转速呈非线性变化,瞬时马格努斯力系数随滚转角呈正弦变化。  相似文献   

11.
栅格舵从折叠到展开的过程中气动特性变化剧烈,对展开可靠性和导弹整体气动特性的影响都比较大。针对栅格舵这种复杂的构造形式,生成了带有棱柱层的非结构网格,再结合重叠网格技术对栅格舵导弹超声速绕流流场进行了数值模拟,计算结果与风洞试验结果吻合较好。在此基础上,对超声速下栅格舵动态展开过程的非定常流场进行了数值模拟,分析了栅格舵导弹动态气动特性的变化规律。  相似文献   

12.
为了研究非对称×形折叠翼巡飞弹的气动特性,在保证弹径、弹长、舵翼的弦长和暴露展长相同的情况下,分别开展了对称×形折叠翼气动布局与非对称×形折叠翼气动布局巡飞弹气动特性的数值模拟,对比了两者侧向力系数、滚转力矩系数、升力系数以及阻力系数,发现与×形翼气动布局相比,非对称×形折叠翼气动布局产生了侧向力与滚转力矩。进一步分析了非对称×形折叠翼气动布局产生侧向力与滚转力矩的原因。结果表明:在亚音速条件下,非对称×形折叠翼气动布局的升力系数与阻力系数随着攻角和马赫数的增大而增大;非对称×形折叠翼气动布局由于舵翼沿着弹身是非对称布置的,导致了非对称的气动干扰,从而产生了侧向力和滚转力矩。非对称×形折叠翼气动布局的侧向力系数随着马赫数的增大而增大,随着攻角的增大呈现先增大后减小再增大的趋势,滚转力矩系数随着攻角和马赫数的变化较为复杂。  相似文献   

13.
通过数值方法求解三维非定常N-S方程组,对旋转尾翼鸭式布局导弹绕流流场进行了数值模拟。研究了时间步长、旋转角速度对导弹气动特性的影响,并比较了与准定常计算结果的差异,重点分析了尾翼旋转的滚转控制特性。数值计算结果表明:尾翼旋转对纵向气动特性影响较小,对横向气动特性影响较大,滚转力矩随转速的增大而增大;尾翼旋转可以有效提高鸭式布局导弹的滚转控制能力。  相似文献   

14.
彭程  郭洋 《兵工学报》2018,39(3):519-527
利用刚性网格运动技术和计算流体力学数值模拟相结合的方法,分析了带鸭舵细长体锥形运动和自转运动耦合作用下的空气动力学特性。研究了带鸭舵细长体耦合运动下的气动力系数随旋转角变化情况,对相同转速、不同攻角下的鸭舵诱导涡系结构和尾翼流场结构进行了对比分析。研究结果表明:耦合运动状态下,细长体的流场结构兼顾锥形运动和自转运动的特点,但又互相干扰、相互融合,涡系发展情况更为复杂,气动力曲线呈现周期性且有规律的振荡;攻角的增加将加剧涡系结构的破坏程度,并改变尾翼附近环状压力等值线的分布形状。  相似文献   

15.
针对栅格翼在导弹上具有重大的应用价值,研究不同格壁形状的栅格翼导弹气动特性。通过介绍控制方程、边界条件和计算条件,采用FLUENT数值模拟的方法研究四角形格壁、菱形格壁和矩形格壁3种格壁形状的栅格翼导弹气动特性,并通过计算分析得出栅格翼导弹的升阻比在研究范围内随着马赫数变化而变化,3种模型变化趋势基本一样。分析结果表明:四角形格壁栅格翼型导弹和菱形格壁栅格翼型导弹的气动性能,优于矩形格壁栅格翼型导弹。  相似文献   

16.
格壁剖面形状不同的栅格翼其升力性能也大有不同,前期研究表明菱形剖面和四角形剖面栅格翼比矩形剖面栅格翼减阻能力更好.文中基于此对后掠45°的栅格翼进行数值模拟研究,结果表明,投影尺寸相同的3种四边形后掠式栅格翼与其正置式相比均能够有效提高升力,增大升阻比,并且菱形和四角形剖面后掠式的栅格翼气动特性均优于矩形剖面后掠式栅格翼.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号