首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conformational change coupled to the redox processes of two tetraheme cytochromes c3 from bacteria of the genus Desulfovibrio have been studied by UV-vis and FTIR difference spectroscopy combined with protein electrochemistry. Two pairs of equivalent hemes were found in Desulfovibrio desulfuricans Norway 4 cytochrome c3 by UV-vis spectroelectrochemical redox titration in an optically transparent thin-layer electrochemical cell. In contrast to this, Desulfovibrio gigas cytochrome c3 showed a UV-vis difference spectrum for the highest potential heme different from that of the others. The redox titrations were monitored by FTIR difference spectroscopy using the same spectroelectrochemical cell. They show that in both cytochromes the overall redox process from the fully oxidized (III4) to the fully reduced oxidation state (II4), III4<==>II4, proceeds via an intermediate oxidation stage (III2II2) which is formed after the second electron uptake. The small amplitude of the difference signals in the reduced-minus-oxidized FTIR difference spectra obtained for the overall redox process in both Desulfovibrio cytochromes indicates a very small conformational change induced by the redox transition. Nevertheless, by application of potential steps from the fully oxidized or reduced form to the midwave potential (as obtained from the UV-vis redox titrations), the reduced-minus-oxidized IR difference spectra corresponding to the intermediate redox transitions (III4<==>III2II2 and III2II2<==>II4) were obtained, reflecting separately the contributions of the high- and low-potential heme pairs to the overall redox-induced conformational change. The overall redox process and both intermediate redox transitions were fully reversible. In the spectral region between 1500 and 1200 cm-1 the IR difference spectra of both cytochromes show several signals previously observed in the reduced-minus-oxidized IR difference spectra of spinach cytochrome b559 and iron-protoporphyrin IX-bis(imidazole) model compounds [Berthomieu, C., Boussac, A., M?ntele, W., Breton, J., & Nabedryk, E. (1992) Biochemistry 31, 11460-11471]. Moreover, Raman spectra of Desulfovibrio vulgaris cytochrome c3 and cytochrome b5 show signals attributed to Raman active heme skeletal modes at nearly the same positions [Kitagawa, T., Kyogoyu, Y., Izuka, T., Ikeda-Saito, M., & Yamanaka, T. (1975) J. Biochem. 78, 719-728], thus allowing their assignment to signals arising from heme vibrational modes. Comparatively strong IR difference signals at 1618 cm-1, which are tentatively assigned to phenylalanine residues, were found in D. desulfuricans cytochrome c3. In the spectra of D. gigas cytochrome c3, IR signals at 1614 cm-1 were detected only for the first redox transition (III4<==>III2II2).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Resonance Raman (RR) spectroscopy, molecular mechanics (MM) calculations, and normal-coordinate structural decomposition (NSD) have been used to investigate the conformational differences in the hemes in ferricytochromes c3. NSD analyses of heme structures obtained from X-ray crystallography and MM calculations of heme-peptide fragments of the cytochromes c3 indicate that the nonplanarity of the hemes is largely controlled by a fingerprint peptide segment consisting of two heme-linked cysteines, the amino acids between the cysteines, and the proximal histidine ligand. Additional interactions between the heme and the distal histidine ligand and between the heme propionates and the protein also influence the heme conformation, but to a lesser extent than the fingerprint peptide segment. In addition, factors that influence the folding pattern of the fingerprint peptide segment may have an effect on the heme conformation. Large heme structural differences between the baculatum cytochromes c3 and the other proteins are uncovered by the NSD procedure [Jentzen, W., Ma, J.-G., and Shelnutt, J. A. (1998) Biophys. J. 74, 753-763]. These heme differences are mainly associated with the deletion of two residues in the covalently linked segment of hemes 4 for the baculatum proteins. Furthermore, some of these structural differences are reflected in the RR spectra. For example, the frequencies of the structure-sensitive lines (nu4, nu3, and nu2) in the high-frequency region of the RR spectra are lower for the Desulfomicrobium baculatum cytochromes c3 (Norway 4 and 9974) than for the Desulfovibrio (D.) gigas, D. vulgaris, and D. desulfuricans strains, consistent with a more ruffled heme. Spectral decompositions of the nu3 and nu10 lines allow the assignment of the sublines to individual hemes and show that ruffling, not saddling, is the dominant factor influencing the frequencies of the structure-sensitive Raman lines. The distinctive spectra of the baculatum strains investigated are a consequence of hemes 2 and 4 being more ruffled than is typical of the other proteins.  相似文献   

3.
The genes encoding the basic and acidic tetraheme cytochromes c3 from Desulfovibrio africanus have been sequenced. The corresponding amino acid sequences of the basic and acidic cytochromes c3 indicate that the mature proteins consist of a single polypeptide chain of 117 and 103 residues, respectively. Their molecular masses, 15102 and 13742 Da, respectively, determined by mass spectrometry, are in perfect agreement with those calculated from their amino acid sequences. Both D. africanus cytochromes c3 are synthesized as precursor proteins with signal peptides of 23 and 24 residues for the basic and acidic cytochromes, respectively. These cytochromes c3 exhibit the main structural features of the cytochrome c3 family and contain the 16 strictly conserved cysteine + histidine residues directly involved in the heme binding sites. The D. africanus acidic cytochrome c3 differs from all the other homologous cytochromes by its low content of basic residues and its distribution of charged residues in the amino acid sequence. The presence of four hemes per molecule was confirmed by EPR spectroscopy in both cytochromes c3. The g-value analysis suggests that in both cytochromes, the angle between imidazole planes of the axial histidine ligands is close to 90 degrees for one heme and much lower for the three others. Moreover, an unusually high exchange interaction (approximately 10[-2] cm[-1]) was evidenced between the highest potential heme (-90 mV) and one of the low potential hemes in the basic cytochrome c3. The reactivity of D. africanus cytochromes c3 with heterologous [NiFe] and [Fe] hydrogenases was investigated. Only the basic one interacts with the two types of hydrogenase to achieve efficient electron transfer, whereas the acidic cytochrome c3 exchanges electrons specifically with the basic cytochrome c3. The difference in the specificity of the two D. africanus cytochromes c3 has been correlated with their highly different content of basic and acidic residues.  相似文献   

4.
The structural basis for the pH dependence of the redox potential in the tetrahemic Desulfovibrio vulgaris (Hildenborough) cytochrome c3 was investigated by site-directed mutagenesis of charged residues in the vicinity of heme I. Mutation of lysine 45, located in the neighborhood of the propionates of heme I, by uncharged residues, namely threonine, glutamine and leucine, was performed. The replacement of a conserved charged residue, aspartate 7, present in the N-terminal region and near heme I was also attempted. The analysis of the redox interactions as well as the redox-Bohr behavior of the mutated cytochromes c3 allowed the conclusion that residue 45 has a functional role in the control of the pKa of the propionate groups of heme I and confirms the involvement of this residue in the redox-Bohr effect.  相似文献   

5.
The electron transfer between formate dehydrogenase and cytochrome c553 from the anaerobic bacteria Desulfovibrio vulgaris Hildenborough has been investigated. Parameters of the electron transfer kinetics are reported. The ionic strength dependence of the complex formation has been evidenced. Two mutants of cytochrome c553 have been obtained using site-directed mutagenesis with the substitutions K62E and K62E,K63E. According to one-dimensional and two-dimensional NMR analysis, the two variants were found to have the same folding pattern as that of the wild-type cytochrome. The replacements of the lysine residues by acidic groups have important effects on the affinity between the two oxidoreduction partners. K62 and K63 are essential for recognition between the formate dehydrogenase and the cytochrome c553. Previous structural studies of cytochrome c553 have demonstrated the involvement of the polypeptide chain in the modulation of the particular low oxidoreduction potential of this cytochrome. The present study provides evidence that, during the evolution of cytochromes from the anaerobic metabolism to aerobic respiration and photosynthesis, the electrostatic distribution at the recognised encounter surface around the heme is highly conserved in all cytochromes.  相似文献   

6.
The tetraheme cytochrome c3 from Desulfovibrio vulgaris Hildenborough is studied using molecular dynamics simulation studies in explicit solvent. The high heme content of the protein, which has its core almost entirely made up of c-type heme, presents specific problems in the simulation. Instability in the structure is observed in long simulations above 1 ns, something that does not occur in a monoheme cytochrome, suggesting problems in heme parametrization. Given these stability problems, a partially restrained model, which avoids destruction of the structure, was created with the objective of performing free energy calculations of heme reduction, studies that require long simulations. With this model, the free energy of reduction of each individual heme was calculated. A correction in the long-range electrostatic interactions of charge groups belonging to the redox centers had to be made in order to make the system physically meaningful. Correlation is obtained between the calculated free energies and the experimental data for three of four hemes. However, the relative scale of the calculated energies is different from the scale of the experimental free energies. Reasons for this are discussed. In addition to the free energy calculations, this model allows the study of conformational changes upon reduction. Even if the precise details of the structural changes that take place in this system upon individual heme reduction are probably out of the reach of this study, it appears that these structural changes are small, similarly to what is observed for other redox proteins. This does not mean that their effect is minor, and one example is the conformational change observed in propionate D from heme I when heme II becomes reduced. A motion of this kind could be the basis of the experimentally observed cooperativity effects between heme reduction, namely positive cooperativity.  相似文献   

7.
The photoactivated metastable triplate states of the porphyrin (free-base, i.e., metal-free) zinc and tin derivatives of horse cytochrome c were investigated using electron paramagnetic resonance. Zero-field splitting parameters, line shape, and Jahn-Teller distortion in the temperature range 3.8-150 K are discussed in terms of porphyrin-protein interactions. The zero-field splitting parameters D for the free-base, Zn and Sn derivatives are 465 x 10(-4), 342 x 10(-4) and 353 x 10(-4) cm-1, respectively, and are temperature invariant over the temperature ranges studied. AN E value at 4 K of 73 x 10(-4) cm-1 was obtained for Zn cytochrome c, larger than any previously found for Zn porphyrins derivatives of hemeproteins, showing that the heme site of cytochrome c imposes an asymmetric field. Though the E value for Zn cytochrome c is large, the geometry of the site appears quite constrained, as indicated by a spectral line shape showing a single species. Intersystem crossing occurred predominantly to the T2 > zero-field spin sublevel. EPR line shape changes with respect to temperature of Zn cyt c are interpreted in terms of vibronic coupling, and a maximum Jahn-Teller crystal-field splitting of approximately 180 cm-1 is obtained. Sn cytochrome c in comparison with the Zn protein exhibits a photoactivated triplet line shape that is less well resolved in the X-Y region. The magnitude of E value is approximately 60 x 10(-4) cm-1 at 4 K; its value rapidly tends toward zero with increasing temperature, from which a value for the Jahn-Teller crystal-field splitting of > or = 40 cm-1 is estimated. In contrast to those for the metal cytochromes, the magnitude of E value for the free-base derivative was essentially zero at all temperatures studied. This finding is discussed as a consequence of an excited-state tautomerization process that occurs even at 4 K.  相似文献   

8.
The thermostability of wild type Desulfovibrio vulgaris Hildenborough tetraheme cytochrome c3 and its H22M, H25M, H35M and H70M mutants was studied by circular dichroism technique in the far UV and Soret regions. It was shown that wild type cytochrome is extremely thermostable and retains structural and functional properties up to 110 degrees C. Mutations do not change overall secondary structure and local structure of the hemes vicinity. All mutants are much more unstable to heat denaturation than the wild type cytochrome. Point mutation (His/Met replacement) results in extraordinary 30-45 degrees C decrease in the protein thermostability depending on the mutation. We may conclude therefore that the heme region is important not only for the functional properties of the cytochrome but also for the overall protein thermostability.  相似文献   

9.
The facultative phototrophic bacterium Rhodobacter capsulatus is capable of growth in a wide range of environmental conditions using a highly branched electron-transfer chain. During respiratory growth of this organism reducing equivalents are conveyed to oxygen via two terminal oxidases, previously called "cyt b410" (cytochrome c oxidase) and "cyt b260" (quinol oxidase). The cytochrome c oxidase was purified to homogeneity from a semiaerobically grown R. capsulatus strain. The purified enzyme consumes oxygen at a rate of 600 s-1, oxidizes reduced equine cyt c and R. capsulatus cyt c2, and has high sensitivity to cyanide. The complex is composed of three major polypeptides of apparent molecular masses 45, 32, and 28 kDa on SDS-PAGE. The 32- and 28-kDa proteins also stain with tetramethylbenzidine, indicating that they are c-type cytochromes. Partial amino acid sequences obtained from each of the subunits reveal significant homology to the fixN, fixO, and fixP gene products of Bradyrhizobium japonicum and Rhizobium meliloti. The reduced enzyme has an optical absorption spectrum with distinct features near 550 and 560 nm and an asymmetric Soret band centered at 418 nm, indicating the presence of both c- and b-type cytochromes. Two electrochemically distinct cyt c are apparent, with redox midpoint potentials (Em7) of 265 and 320 mV, while the low-spin cyt b has an Em7 value of 385 mV. The enzyme binds carbon monoxide, and the CO difference spectrum indicates that CO binds to a high-spin cyt b. Pyridine hemochrome and HPLC analyses suggest that the complex contains 1 mol of heme C to 1 mol of protoheme and that neither heme O nor heme A is present.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Two new multiheme cytochromes were isolated from the anaerobic sulfur reducing bacterium Desulfuromonas acetoxidans. They have monomeric molecular masses of 50 and 65 kDa and contain six and eight hemes, respectively. Visible and EPR spectroscopies, in the as-isolated (oxidised) cytochromes, show the presence of only low-spin hemes in the 50-kDa cytochrome, and of high-spin and low-spin hemes in the 65-kDa cytochrome. The EPR spectra of the native 65-kDa cytochrome indicate multiple heme-heme interactions, including integer-spin systems as judged by parallel-mode EPR. The 50-kDa cytochrome has a complex redox pattern, as shown by EPR redox titrations, and contains one heme with unusual characteristics. Both cytochromes cover an extremely wide range of reduction potentials, which go from +100 mV to -375 mV for the 50-kDa cytochrome, and +185 mV to -235 mV for the 65-kDa cytochrome. The two cytochromes were tested for hydroxylamine oxidoreductase activity and polysulfide reductase activity, but neither displayed any activity. In contrast, it was found for the first time that the previously characterised cytochrome c551.5, from the same bacterium is very active in the reduction of polysulfide, which suggests that it acts as a terminal reductase in D. acetoxidans.  相似文献   

11.
Cytochrome c554 (cyt c554), a tetra-heme cytochrome from Nitrosomonas europaea, is an essential component in the biological nitrification pathway. In N. europaea, ammonia is converted to hydroxylamine, which is then oxidized to nitrite by hydroxylamine oxidoreductase (HAO). Cyt c554 functions in the latter process by accepting pairs of electrons from HAO and transferring them to a cytochrome acceptor. The crystal structure of cyt c554 at 2.6 A resolution shows a predominantly alpha-helical protein with four covalently attached hemes. The four hemes are arranged in two pairs such that the planes of the porphyrin rings are almost parallel and overlapping at the edge; corresponding heme arrangements are observed in other multi-heme proteins. Striking structural similarities are evident between the tetra-heme core of cyt c554 and hemes 3-6 of HAO, which suggests an evolutionary relationship between these redox partners.  相似文献   

12.
The 1.96 A structure of turnip cytochrome f revealed a linear internal chain of H2O molecules with the oxygen atoms of the chain having occupancies and "B" factors comparable to those of neighboring atoms [Martinez et al. (1996) Protein Sci. 5, 1081-1092. ]. Four waters extend 11 A from the heme toward Lys66 on the cytochrome surface. All residues that contribute an atom to the 15 H-bonds of five internal H2O molecules are essentially conserved in 23 cytochrome sequences. With only Gln and Asn side chains involved in H-bonding, the water chain resembles a "proton wire". The function of the conserved H2O chain was tested through site-directed mutagenesis of these Asn and Gln residues. Four of the five conserved Asn/Gln residues were changed in six mutants generated in the green alga, Chlamydomonas reinhardtii. Except for the N168F mutant, all grew photosynthetically. Although the rates of oxidation of cyt f oxidation and of reduction of cyt b6 (5-6 ms in the wild type) were not significantly affected, the rates of cyt f reduction and generation of the slow electrochromic band shift (Deltapsis) were markedly decreased, the half-times increasing to as much as 38 and 18 ms, respectively. Thus, in these mutants, reduction of cyt b6 reduction clearly precedes that of cyt f. Retardation of Deltapsis in the absence of an observable change in the rate of cyt b6 reduction implied that the rate of H+ translocation decreased in the mutants, and electron transfer was concomitantly retarded, most likely between the ISP and cyt f. The following was concluded: (i) proton and electron transfer are coupled in reduction of cyt f, and the cyt f water chain functions in H+ transfer; (ii) reduction of the high- and low-potential chains in the b6f complex is not concerted in the water chain mutants; and (iii) quinol deprotonation and electron transfer from reduced quinone are initiated by an early event, probably the movement of the ISP triggered by oxidation of cyt f.  相似文献   

13.
The effect of five water-miscible organic solvents (tetrahydrofuran, N,N-dimethylformamide, acetonitrile, 2-propanol, and methanol) on the oxidation of pinacyanol chloride (Quinaldine Blue) by horse heart cytochrome c was determined. Hydrogen peroxide was used as the oxidant, and a change in catalytic property of the dissolved protein was observed after a certain threshold concentration of the organic solvent had been reached. The maximum specific activity was correlated with the Dimroth-Reichardt parameter for the solvents, which is directly related to the free energy of the solvation process. The kinetic constants for the oxidation of pinacyanol chloride were determined in systems containing different proportions of tetrahydrofuran. The best catalytic efficiency (kcat/KM,app) was obtained in a system containing 50% tetrahydrofuran in phosphate buffer. In a mixture containing 90% tetrahydrofuran, cytochrome c showed 18% of its maximum activity. The inactivation of cytochrome c was mainly due to the presence of hydrogen peroxide, and a direct correlation was found between the inactivation constant and the concentration of hydrogen peroxide in the system. The chemical modifications and immobilization of cytochrome c were able to change its biocatalytic activity and stability in the organic solvent system. The kinetic constants and the inactivation of three other type c cytochromes, from Saccharomyces cerevisiae, Pseudomonas aeruginosa, and Desulfovibrio vulgaris Hildenborough in a system containing 90% tetrahydrofuran were compared with those of cytochrome c from horse heart. Cytochrome c551 from P. aeruginosa showed the best stability against hydrogen peroxide and a higher catalytic efficiency than that of horse heart cytochrome c.  相似文献   

14.
The gene encoding Desulfovibrio desulfuricans Norway cytochrome c3 (Mr 26,000), a dimeric octaheme cytochrome belonging to the polyheme cytochrome c3 superfamily, has been cloned and successfully expressed in another sulfate reducing bacteria, D. desulfuricans G201. The gene, named cycD, is monocistronic and encodes a cytochrome precursor of 135 amino acids with an extension at the NH2 terminus of 24 amino acids. This extension acts as a signal sequence which allows export across the cytoplasmic membrane into the periplasmic space. Tyrosine 73, which is in a close contact with the histidine sixth axial ligand to the heme 4 iron atom, has been replaced by a glutamate residue using site-directed mutagenesis. The cytochrome mutant when expressed in D. desulfuricans G201, is correctly folded and matured. A global increase of the oxidoreduction potentials of about 50 mV is measured for the Y73E cytochrome. The mutation also has a strong influence on the interaction of the cytochrome with its redox partner, the hydrogenase. This suggests, like the tetraheme cytochrome c3 (Mr 13, 000), heme 4 is the interactive heme in the cytochrome-hydrogenase complex and that alteration of the heme 4 environment can greatly affect the electron transfer reaction with its redox partner.  相似文献   

15.
The presence of a two-subunit cytochrome (cyt) b-c1 subcomplex in chromatophore membranes of Rhodobacter capsulatus mutants lacking the Rieske iron-sulfur (Fe-S) protein has been described previously [Davidson, E., Ohnishi, T., Tokito, M., and Daldal, F. (1992) Biochemistry 31, 3351-3358]. Here, this subcomplex was purified to homogeneity in large quantities, and its properties were characterized. As expected, it contained stoichiometric amounts of cyt b and cyt c1 subunits forming a stable entity devoid of the Fe-S protein subunit. The spectral and thermodynamic properties of its heme groups were largely similar to those of a wild-type bc1 complex, except that those of its cyt bL heme were modified as revealed by EPR spectroscopy. Dark potentiometric titrations indicated that the redox midpoint potential (Em7) values of cytochromes bH, bL, and c1 were very similar to those of a wild-type bc1 complex. The purified b-c1 subcomplex had a nonfunctional ubihydroquinone (UQH2) oxidation (Qo) site, but it contained an intact ubiquinone (UQ) reductase (Qi) site as judged by its ability to bind the Qi inhibitor antimycin A, and by the presence of antimycin A sensitive Qi semiquinone. Interestingly, its Qo site could be readily reconstituted by addition of purified Fe-S protein subunit. Reactivated complex exhibited myxothiazol, stigmatellin, and antimycin A sensitive cyt c reductase activity and an EPR gx signal comparable to that observed with a bc1 complex when the Qo site is partially occupied with UQ/UQH2. However, a mutant derivative of the Fe-S protein subunit lacking its first 43 amino acid residues was unable to reactivate the purified b-c1 subcomplex although it could bind to its Qo site in the presence of stigmatellin. These findings demonstrated for the first time that the amino-terminal membrane-anchoring domain of the Fe-S protein subunit is necessary for UQH2 oxidation even though its carboxyl-terminal domain is sufficient to provide wild-type-like interactions with stigmatellin at the Qo site of the bc1 complex.  相似文献   

16.
The reduction potentials of beef heart cytochrome c and cytochromes c2 from Rhodopseudomonas palustris, Rhodobacter sphaeroides, and Rhodobacter capsulatus were measured through direct electrochemistry at a surface-modified gold electrode as a function of temperature in nonisothermal experiments carried out at neutral and alkaline pH values. The thermodynamic parameters for protein reduction (DeltaS degrees rc and DeltaH degrees rc) were determined for the native and alkaline conformers. Enthalpy and entropy terms underlying species-dependent differences in E degrees and pH- and temperature-induced E degrees changes for a given cytochrome were analyzed. The difference of about +0.1 V in E degrees between cytochromes c2 and the eukaryotic species can be separated into an enthalpic term (-DeltaDeltaH degrees rc/F) of +0.130 V and an entropic term (TDeltaDeltaS degrees rc/F) of -0.040 V. Hence, the higher potential of the bacterial species appears to be determined entirely by a greater enthalpic stabilization of the reduced state. Analogously, the much lower potential of the alkaline conformer(s) as compared to the native species is by far enthalpic in origin for both protein families, and is largely determined by the substitution of Met for Lys in axial heme ligation. Instead, the biphasic E degrees /temperature profile for the native cytochromes is due to a difference in reduction entropy between the conformers at low and high temperatures. Temperature-dependent 1H NMR experiments suggest that the temperature-induced transition also involves a change in orientation of the axial methionine ligand with respect to the heme plane.  相似文献   

17.
The amino acid sequence of an oxygen-binding heme protein (SHP) from Rhodobacter sphaeroides has been determined. The cysteines, which bind the single heme group in the 112-residue protein, are located at positions 43 and 46. SHP is similar in size to the large membrane-bound form of the class I cytochrome c5 of Azotobacter vinelandii (116 residues) and in the location of the heme binding site at positions 48 and 51. Two extra cysteines in SHP (residues 89 and 97) are located in positions similar to those of cytochrome c5 (residues 98 and 101) and form a disulfide bridge in both proteins. In total, four regions of alpha-helix are predicted, covering 46% of the protein, which is comparable to that in other small cytochromes. SHP is thus distantly related to small class I c-type cytochromes but is representative of a distinct family by virtue of its high-spin nature, the lack of a strong sixth ligand, and its capacity to bind oxygen. Potentially, the most important characteristic of SHP is its ability to transiently bind oxygen during autoxidation, which occurs with a half-life of 3 min with a 4-fold excess of O2. SHP also binds carbon monoxide, azide, and cyanide. The kinetics of reduction by free flavins indicate that SHP is less reactive than other class I cytochromes c and that the heme is less accessible to solvent. There is localized positive charge (+3) at the site of reduction of SHP, although the overall protein charge is -2. This may account in part for the ability of SHP to bind anions.  相似文献   

18.
The photosynthetic reaction center (RC) of Rhodobacter sphaeroides and cytochrome c2 (cyt c2), its physiological secondary electron donor, have been co-crystallized. The molar ratio of RC/cyt c2 was found by SDS-PAGE and optical absorbance changes in the co-crystals to be 4. The crystals diffracted X-rays to 3.5 angstroms. However, the resolution degraded during data collection. A data set, 82.5% complete, was collected to 4.5 angstroms. The crystals belong to the tetragonal space group P4(3)2(1)2, with unit cell dimensions of a = b = 142.7 angstroms and c = 254.8 angstroms. The positions of the RCs in the unit cell were determined by molecular replacement. A comparable search for the cyt c2 by this method was unsuccessful because of the small contribution of the cytochrome to the total scattering and because of its low occupancy. The cyt c2 was positioned manually into patches of difference electron density, adjacent to the periplasmic surface of the M polypeptide subunit of the RC. The difference electron density was not sufficient for precise positioning of the cyt c2, and its orientation was modeled by placing the exposed edge of the heme toward the primary donor of the reaction center D and by forming pairs for electrostatically interacting RC and cyt c2 amino acid residues. The RC-cyt c2 structure derived from the co-crystal data was supported by use of omit maps and structure refinement analyses. Cyt c2 reduces the photooxidized primary donor D+ in 0.9 +/- 0.1 micros in the co-crystals, which is the same as the fast electron transfer rate in vivo and in solution. This result provides strong evidence that the structure of the complex in the co-crystal is the same as in solution. Two additional methods were used to investigate the structure of the RC-cyt c2 complex: (i) Docking calculations based on interprotein electrostatic interactions identified possible binding positions of the cyt c2 on the RC. The cyt c2 position with the lowest electrostatic energy is very similar to that of the cyt c2 in the proposed co-crystal structure. (ii) Site-directed mutagenesis was used to modify two aspartic acid residues (M184 and L155) on the periplasmic surface of the RC. Cyt c2 binding affinity to these RCs and electron transfer rates to D+ in these RCs support the co-crystal structure of th RC-cyt c2 complex.  相似文献   

19.
When male rats were given either a single dose of cadmium (3.58 mg CdCl2.6H2O/kg, i.p.) 72 h prior to sacrifice or a single dose of nickel (59.5 mg NiCl2.6H2O/kg, s.c.) 16 h prior to sacrifice, the activities of ethylmorphine N-demethylase, aminopyrine N-demethylase and aniline 4-hydroxylase, and the levels of cytochrome P-450 and microsomal heme were significantly decreased. Cadmium decreased the cytochrome b5 level significantly, whereas it did not alter the NADPH-cytochrome c reductase activity significantly. In contrast, Ni did not alter the cytochrome b5 level significantly but decreased the NADPH-cytochrome c reductase activity significantly. For the combined treatment, animals received the single dose of nickel 56 h after the single dose of cadmium and then they were killed 16 h later. In these animals ethylmorphine N-demethylase, aminopyrine N-demethylase and NADPH-cytochrome c reductase activities and cytochromes P-450 and b5 levels increased significantly as compared to those of controls, whereas aniline 4-hydroxylase activity and microsomal heme level remained unaltered. In concordance with the increase in the enzyme activities, certain P-450 protein bands were observed to be elevated when studied on SDS-polyacrylamide gel electrophoresis. Furthermore, when the monooxygenase activities and SDS-polyacrylamide gel electrophoresis profiles of combined metal-treated animals were compared with those of the animals treated with classic inducers such as phenobarbital (75 mg/kg i.p., 72, 48 and 24 h prior to sacrifice) and 3-methylcholanthrene (20 mg/kg i.p., 72, 48 and 24 h prior to sacrifice), the combination of metals seemed to have tendency to stimulate certain phenobarbital and 3-methylcholanthrene inducible cytochrome P-450 isozymes.  相似文献   

20.
A spectroelectrochemical study is described of the sixteen hemes in the high-molecular-mass, monomeric cytochrome c (Hmc) from the periplasmic space of Desulfovibrio vulgaris, strain Hildenborough. One of the hemes has special properties. In the oxidized state at pH 7 it is predominantly high-spin, S = 5/2, with a g perpendicular value of less than 6 indicative of quantum-mechanical mixing with a low-lying (800 cm-1) S = 3/2 state; the balance is probably a low-spin derivative. The high-spin heme has an Em.7.5 value of +61 mV. The fifteen other hemes are low-spin bis-histidine coordinated with Em.7.5 values of approximately -0.20 V. Two of these hemes exhibit very anisotropic EPR spectra with a g1 value of 3.65 characteristic for strained bis-histidine coordination. A previous proposal, namely that methionine is coordinated to one of the hemes [Pollock, W.B.R., Loufti, M. Bruschi, M. Rapp-Giles, B.J., Wall, J. & Voordouw, G. (1991) J. Bacteriol. 173, 220] is disproved using spectroscopic evidence. Contrasting electrochemical data sets from two previous studies [Tan, J. & Cowan, J.A. (1990) Biochemistry 29, 4886; Bruschi, M., Bertrand, P., More, C., Leroy, G., Bonicel, J., Haladjian, J., Chottard, G., Pollock, W.B.R. & Voordouw, G. (1992) Biochemistry 31, 3281] are not consistent with our EPR titration results and are not reproducible. Hmc can be reduced by D. vulgaris Fe-hydrogenase in the presence of molecular hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号