首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: Endothelin is increased in plasma following myocardial infarction. Whether brief periods of myocardial ischaemia not leading to myocardial infarction increase plasma endothelin is not known. Thus, the present study was designed to examine cardiac endothelin balance in association with a 10 min coronary artery occlusion followed by reperfusion. METHODS: Venous blood was selectively sampled from the transiently ischaemic myocardium using a shunt between the anterior interventricular vein and the right atrium in eight pentobarbitone anaesthetised pigs. Flow in the shunt was measured with a Doppler flow probe. Arterial blood was drawn from the aortic arch. Plasma endothelin was measured using an Endothelin 1-21 specific [125I] assay system. This assay system has no cross reactivity with big endothlin. RESULTS: A net cardiac endothelin uptake of 0.7(0.3-1.4) fmol.min-1 x g-1 (median, 95% confidence interval) in the control period shifted to a net release during the first 10 min of reperfusion. The release reached a maximum of 2.8(0.4-6.0) fmol.min-1 x g-1 after 1.5 min of reperfusion. Cardiac venous endothelin concentration increased from 3.4(2.5-4.8) to 4.4(3.6-6.9) and 4.4(3.6-6.6) fmol.ml-1 at 1.5 and 5 min of reperfusion, respectively (p < 0.001 for both). Arterial endothelin concentration decreased from 4.8(3.9-6.1) to 2.7(2.4-4.3) fmol.ml-1 at 10 min of reperfusion (p < 0.001). CONCLUSION: Endothelin is released from the heart for several minutes during reperfusion following a brief coronary artery occlusion.  相似文献   

2.
We have investigated the relationship between plasma endothelin (ET) concentrations and several clinical characteristics in 31 patients with acute myocardial infarction (MI). ET levels were also measured in 10 age-matched healthy subjects, 9 patients with unstable angina, and 20 patients with chronic heart disease. In patients with MI, although no significant relationship was observed between plasma ET concentrations and measured hemodynamic parameters, plasma levels were higher in patients with pulmonary congestion than in those without this complication (1.61 +/- 0.29 vs 1.21 +/- 0.33 fmol/ml; p < 0.01). No significant difference in plasma ET levels was found between cardiac and peripheral sampling sites (pulmonary artery; 1.07 +/- 0.28, right atrium; 1.02 +/- 0.28, peripheral artery; 1.12 +/- 0.23, peripheral vein; 1.14 +/- 0.38 fmol/ml: N.S.), or among patients with uncomplicated MI, unstable angina (1.00 +/- 0.32 fmol/ml), and healthy subjects (1.01 +/- 0.29 fmol/ml). Increased level were observed in patients with decompensated heart failure due to chronic heart disease, but were not found in patients without pulmonary congestion (1.62 +/- 0.60 vs 1.11 +/- fmol/ml; p < 0.01). These observations suggest that plasma ET concentrations are elevated in the presence of congestive heart failure or severe ventricular depression, but are not persistently increased by myocardial ischemia per se.  相似文献   

3.
Plasma antithrombin-III (AT-III), protein S, and protein C were measured during myocardial stunning (MS) and acute myocardial infarction (AMI). The effects of magnesium (Mg), diltiazem, and a Mac-1 inhibitor on their plasma levels were elucidated. Forty-nine open-chest swine underwent brief (8 min) or prolonged (50 min) coronary artery occlusion followed by reperfusion. During MS an increase in the plasma AT-III (from 98.5 +/- 3.38% to 138.1 +/- 3.6%) during the early occlusion phase, without any further changes was observed. The profile of total protein S was not changed during MS. Protein C increased at the end of occlusion (from 45.3 +/- 1.8% to 55.7 +/- 1.4%) reaching a peak (64.5 +/- 1.4%) at the beginning of reperfusion. When compared with controls, no significant differences were found in the antithrombotics profile during MS after pretreatment with Mac-1 inhibitor. For the AMI, the AT-III decreased during occlusion (from 98.5 +/- 3.4% to 61.0 +/- 3.6%). The protein S decreased during occlusion with the lowest level at 1 h of reperfusion (from 71.8 +/- 2.2% to 46.7 +/- 1.0%), followed by an increase during late reperfusion (59.2 +/- 1.5%). Contrarily, protein C increased during occlusion and early reperfusion (from 44.7 +/- 2.6% to 79.4 +/- 2.4%), but declined to 49.6 +/- 2.5% thereafter. In both Mg and diltiazem-treated swine, protein C was higher at the end of occlusion and during the entire reperfusion period compared with controls. Mg and diltiazem therapy was associated with the slight elevation of plasma AT-III. The patterns for protein S level during ischemia-reperfusion were similar with the controls. Protein S was higher at the end of occlusion and through the entire reperfusion in the NPC 15669-treated animals when compared with the controls. Mac-1 inhibition was associated with the elevated protein C during late reperfusion. Ability of Mg, diltiazem, and Mac-1 inhibitor to favorably modulate the plasma level of antithrombotics have direct clinical implications for the use of these agents in patients with acute coronary artery syndromes.  相似文献   

4.
We used in vitro translation and antibodies against phosphoserine and the eukaryotic initiation factors elF-4E, elF-4G, and elF-2 alpha to examine the effects of global brain ischemia and reperfusion on translation initiation and its regulation in a rat model of 10 min of cardiac arrest followed by resuscitation and 90 min of reperfusion. Translation reactions were performed on postmitochondrial supernatants from brain homogenates with and without aurintricarboxylic acid to separate incorporation due to run-off from incorporation due to peptide synthesis initiated in vitro. The rate of leucine incorporation due to in vitro-initiated protein synthesis in normal forebrain homogenates was approximately 0.4 fmol of leucine/min/microgram of protein and was unaffected by 10 min of cardiac arrest, but 90 min of reperfusion reduced this rate 83%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blots of these homogenates showed that neither 10 min of global brain ischemia nor 90 min of reperfusion induced significant alterations in the quantity or serine phosphorylation of elF-4E. However, we observed in all 90-min-reperfused samples elF-4G fragments that also bound elF-4E. The amount of elF-2 alpha was not altered by ischemia or reperfusion, and immunoblotting after isoelectric focusing did not detect serine-phosphorylated elF-2 alpha in normal samples or in those obtained after ischemia without reperfusion. However, serine-phosphorylated elF-2 alpha was uniformly present after 90 min of reperfusion and represented 24 +/- 3% of the elF-2 alpha in these samples. The serine phosphorylation of elF-2 alpha and partial fragmentation of elF-4G observed after 90 min of reperfusion offer an explanation for the inhibition of protein synthesis.  相似文献   

5.
AIM: To study the protective and antiperoxidative effects of hyperin (hyperoside; quercetin-3-O-galactoside; Hyp) on myocardial ischemia/reperfusion. METHODS: The rabbit anterior descenging branch of left coronary artery was occluded for 60 min and then released to allow reperfusion for 20 min. Hemodynamics (LVP, LV +/- dp/dt) and electrocardiogram (ECG, lead II) were monitored continuously with polygraph. After reperfusion, the blood sample and myocardium were taken to assay plasma creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and cations in myocardium. Using a Langendorff system, the isolated heart of rat was initiated by ischemia for 40 min followed by 30 min of reperfusion. Malondialdehyde (MDA) contents of cardiac effluent and myocardium were measured with fluorescence spectrophotometer. RESULTS: Hyp 10 mg.kg-1 i.v. depressed changes in LVP, LV +/- dp/dtmax, ECG, plasma CPK, LDH, and cations (Ca2+, Mg2+, Na+) in myocardium induced by ischemia/reperfusion in rabbits. Hyp 10 and 100 mumol.L-1 markedly reduced the increase in MDA production in isolated rat hearts after ischemia/reperfusion. CONCLUSION: Hyp possesses a protective effect against myocardial ischemia/reperfusion injury via attenuating lipid peroxidation.  相似文献   

6.
Endothelin (ET), the most potent endogenous vasoconstrictor with mitogenic potency, is generated from its precursor big-endothelin (BET) in a proteolytic process and discussed as a pathogenetic factor in coronary artery disease and in the acute coronary syndromes. Several studies documented elevated plasma endothelin concentrations in acute myocardial infarction, but conflicting results were reported in patients with stable and unstable angina. Only few studies determined big endothelin, although it half-life and plasma concentrations are higher in comparison to endothelin. ET and BET levels (Radioimmunoassay, Biomedica GmbH, Vienna) were determined in patients with stable angina (SAP, n = 20), unstable angina (IAP, n = 12), acute myocardial infarction (AMI, n = 12) and healthy subjects (NP, n = 11). The concentrations of ET and BET (median (minimum-maximum) in fmol/ml) of the patients with stable angina (SAP: ET 0.7 (0.3-1.1); BET 1.7 (0.7-2.9)), unstable angina (IAP: ET 1.0(0.5-1.7); BET 2.5 (1.3-4.1)) and acute myocardial infarction (AMI: ET 1.2 (0.6-2.3); BET 3.6 (3.2-5.3)) showed a significant difference compared to controls (NP: ET 0.5 (0.4-0.7); BET 1.4 (1.1-1.7)) (SAP vs. NP: ET p < 0.01; BET p < 0.05; IAP and AMI vs. NP: ET and BET p < 0.001). Also, the concentrations of the peptides differed significantly dependent on the clinical severity of coronary artery disease (AMI vs. SAP: ET and BET p < 0.001; AMI vs. IAP: BET p < 0.05; IAP vs. SAP: ET p < 0.05; BET p < 0.01). Twelve of 15 patients with big endothelin concentrations over 3 fmol/ml suffered acute myocardial infarction. Seven of 12 patients with AMI showed elevated ET and BET concentrations before the increase of creatinecinase. There was no correlation between number of risk factors per patient, cholesterin and subfractions, severity of CAD classified in one-two-three-vessel disease or coronary score according to modified criteria of the American Heart Association (AHA). We conclude that in patients with coronary artery disease endothelin and big endothelin levels are elevated and related to the clinical and not to the morphological severity of coronary artery disease. Big endothelin is the more sensitive parameter in comparison to endothelin and indicates a severe course of myocardial ischemia in patients with unstable angina. The development of assays with the possibility of a quick determination of the peptides may be valuable for risk stratification of acute coronary events.  相似文献   

7.
We studied the effect of halothane on regional myocardial function during acute ischemia and reperfusion in an open-chest pig model. Anesthesia was induced with thiopental and fentanyl and maintained with an intravenous (IV) infusion of pentobarbital and fentanyl. Regional myocardial function was studied with microsonometers placed in the subendocardium supplied by the left anterior descending coronary (LAD) and circumflex coronary artery (LX). Systolic function was evaluated with reference to the end-systolic pressure-length relationship (ESPLR) and regional systolic shortening. Diastolic dysfunction was studied with postsystolic shortening (PSS). Ischemia was induced with 15 min of total occlusion of the LAD artery, and thereafter reperfusion was allowed for 120 min. Five groups were studied: one group received only pentobarbital and fentanyl (n = 10); the other groups received halothane 0.2% (n = 5), 0.4% (n = 7), 0.6% (n = 5), and 0.8% (n = 5). The pentobarbital and fentanyl infusion was adjusted in the halothane groups in an effort to maintain arterial blood pressure and heart rate within specified limits (when possible). Results indicate that regional dysfunction during acute ischemia was equal among all the groups. However, on reperfusion, halothane significantly reduced the incidence of ventricular arrhythmias. Halothane (0.6% and 0.8%) was associated with less regional postischemic systolic dysfunction during reperfusion when compared to the other groups. Hearts subjected to 0.6% and 0.8% halothane also were less stiff at the end of systole (i.e., the extrapolated ventricular volume at zero ventricular pressure was less) after 120 min reperfusion compared to animals receiving less halothane. However, diastolic dysfunction was equal among the groups during reperfusion. We conclude that, in this model, administration of halothane is associated with improved recovery of regional systolic function and potentially beneficial pressure-length relations at the end of systole after acute severe myocardial ischemia and reperfusion. Furthermore, administration of halothane was associated with fewer reperfusion arrhythmias compared to animals not receiving halothane.  相似文献   

8.
Myocardial ischemia elicits translocation of the insulin-sensitive glucose transporter GLUT-4 from intracellular membrane stores to the sarcolemma. Because glucose metabolism is of crucial importance for post-ischemic recovery of the heart, myocardial uptake of [3H]-labeled 2-deoxyglucose and subcellular localization of GLUT-4 were determined during reperfusion in isolated rat hearts perfused with medium containing 0.4 mm palmitate and 8 mm glucose. Hearts were subjected to 20 min of no-flow ischemia, followed by reperfusion for up to 60 min. Subcellular localization of GLUT-4 was determined by cell fractionation followed by immunoblotting. After 15 and 60 min of reperfusion uptake of 2-deoxyglucose was significantly higher (91+/-9 and 96+/-8 nmol/min/g wet weight, respectively) as compared to control values (65+/-1 nmol/min/g wet weight). Ischemia elicited translocation of GLUT-4 to the sarcolemma, which persisted after 15 min of reperfusion. However, after 60 min of reperfusion the subcellular distribution of GLUT-4 was similar to control hearts. In conclusion, reversal of ischemia-induced translocation of GLUT-4 to the sarcolemma is rather slow, possibly facilitating glucose uptake early during reperfusion. However, myocardial uptake and phosphorylation of 2-deoxyglucose remains enhanced late during reperfusion, when pre-ischemic distribution of GLUT-4 is almost completely restored, indicating that additional mechanisms are likely to be involved in post-ischemic stimulation of glucose uptake.  相似文献   

9.
Oxygen-derived free radicals play a critical role in atherogenesis and reperfusion injury. The present experiment evaluated the effects of carvedilol, a new beta adrenoreceptor blocker with potent free radical-scavenging activity, on myocardial ischemia and reperfusion injury in a hypercholesterolemic rabbit model. New Zealand rabbits were fed a normal diet, a high-cholesterol diet, or a high-cholesterol diet supplemented with 1200 ppm carvedilol or propranolol. Eight weeks later, the rabbits were subjected to 60 min of myocardial ischemia followed by 60 min of reperfusion. The nontreated cholesterol-fed animals experienced greater cardiac damage after ischemia and reperfusion than rabbits fed a normal diet (necrosis 51% +/- 4% vs. 28% +/- 3% in the normal-diet group, P < .01). In addition, nontreated cholesterol-fed rabbits showed a significantly decreased vasorelaxant response to ACh in U-46619-precontracted aortic rings (56% +/- 5% vs 90% +/- 3% in the control group, P < .001). Treatment with propranolol neither preserved endothelial function after cholesterol feeding nor reduced neutrophil accumulation in ischemic-reperfused myocardial tissue. Propranolol treatment did significantly decrease HR, pressure-rate index and infarct size (necrosis 33% +/- 4%). Despite their having essentially identical effects on HR and pressure-rate index, carvedilol exerted more profound cardiac protective effects than propranolol (necrosis 19% +/- 3%). Moreover, carvedilol treatment significantly preserved aortic endothelial function and markedly reduced neutrophil accumulation in ischemic-reperfused myocardial tissue. These results indicate that in addition to its beta blocking activity, the antioxidant and endothelial protective activities of carvedilol contributed significantly to its cardiac protective effects after ischemia and reperfusion.  相似文献   

10.
OBJECTIVES: This study examined the changes in myocardial energy metabolism during myocardial ischemia after "remote preconditioning" and investigated the involvement of adenosine receptors in the mechanisms of this effect. BACKGROUND: Recent studies have indicated that a brief period of ischemia and reperfusion (ischemic preconditioning, PC) in a remote organ reduces myocardial infarct size (IS) protecting against subsequent sustained myocardial ischemia. However, the mechanisms of "remote PC" remain unclear. We assessed myocardial energy metabolism during sustained myocardial ischemia and reperfusion after renal PC (RPC), in comparison with that after myocardial PC (MPC) in open-chest rabbits. It has been established that adenosine receptors are involved in the mechanisms of MPC. METHODS: Rabbits that had been anesthetized with halothane were divided into six groups. The control (CNT) group underwent 40-min coronary occlusion followed by 120 min reperfusion. Before the procedure, the MPC group underwent an additional protocol of 5 min coronary artery occlusion and 20 min reperfusion, and the RPC group received a 10 min episode of renal artery occlusion and 20 min reperfusion. In additional experimental groups, 8 sulfophenyl-theophylline (SPT, 10 mg/kg), an adenosine receptor inhibitor, was intravenously injected before the 40 min myocardial ischemia (SPT, MPC + SPT and RPC + SPT groups, respectively). Myocardial levels of phosphocreatine (PCr), ATP and intracellular pH (pHi) were measured by 31P-NMR spectroscopy. RESULTS: RPC and MPC delayed the decreases in ATP levels, preserved pHi during 40-min myocardial ischemia and resulted in better recovery of ATP and PCr during 120 min reperfusion compared with the controls. SPT abolished the improvement in myocardial energy metabolism and the reduction in myocardial IS caused by MPC or RPC. Myocardial IS in the CNT (n = 8), MPC (n = 9), RPC (n = 9), SPT (n = 6), MPC + SPT (n = 8) and RPC + SPT (n = 8) groups averaged 42.8+/-3.5%, 18.2+/-1.8%*, 19.6+/-1.3%*, 44.9+/-5.0%, 35.6+/-2.7% and 34.8+/-3.6% of the area at risk (*p < 0.05 vs. CNT), respectively. CONCLUSIONS: PC in a remote organ, similar to MPC, improved myocardial energy metabolism during ischemia and reperfusion and reduced IS in vivo by an adenosine-dependent mechanism in rabbits.  相似文献   

11.
1. The present study examines whether three cycles of brief coronary artery occlusion and reperfusion (i.e. ischaemic preconditioning; PC) can prevent vasodilator dysfunction and the impairment of myocardial reflow caused by prolonged ischaemia. Coronary blood flow, left ventricular dP/dt, systemic arterial blood pressure and heart rate were measured in open-chest anaesthetized dogs. 2. Sixty minute occlusion of the left circumflex coronary artery (LCx) and 60 min LCx reperfusion (ISC/REP; group 1) significantly reduced resting coronary blood flow (CBF, initial 29 +/- 3 mL/min; ISC/REP 20 +/- 3 mL/min, P < 0.05 vs initial) and increased coronary vascular resistance (CVR, initial 4.1 +/- 0.6 mmHg/min per mL; ISC/REP 5.8 +/- 1.0 mmHg/min per mL, P < 0.05 vs initial). By contrast CBF and CVR were not affected in dogs subjected to preconditioning before ischaemia (group 2: CBF, initial 24 +/- 4 mL/min; PC+ISC/REP 23 +/- 4 mL/min; CVR, initial 4.7 +/- 0.6 mmHg/min per mL; PC+ ISC/REP 5.3 +/- 1.0 mmHg/min per mL). These data suggest that ischaemic preconditioning prevents the ischaemia-induced impairment of myocardial reflow. 3. Ischaemia and reperfusion impaired coronary dilator responses to the endothelium-dependent dilator acetylcholine (delta CBF, after ISC/REP: 50 +/- 6% of initial) and the endothelium-independent dilator glyceryl trinitrate (delta CBF, ISC/REP: 46 +/- 6% of initial). Despite the improvement in reperfusion in the preconditioned group, there was no significant improvement in responses to acetylcholine (PC+ISC/REP 52 +/- 6% of initial) or glyceryl trinitrate (PC+ISC/REP 59 +/- 6% of initial) after ischaemia and reperfusion. 4. The reduction in left ventricular dP/dt after ischaemia and reperfusion was significantly smaller in the preconditioned group indicating a lower level of impairment of cardiac contractility. In addition, we confirmed that preconditioning caused a significant reduction in infarct size and a reduction in the release of lactate dehydrogenase indicating less cardiac injury. 5. These results suggest that although ischaemic preconditioning was able to improve both myocardial reperfusion and contractility, it was not able to preserve vasodilator function. Such a reduction in vasodilator reserve could prevent adequate myocardial perfusion under conditions of elevated oxygen demand.  相似文献   

12.
BACKGROUND: Although previous investigators have demonstrated that myocardial preconditioning reduces infarct size, the mechanisms of cardioprotection associated with preconditioning are not completely understood. METHODS AND RESULTS: To test the hypothesis that preconditioning (four 5-minute episodes of ischemia each followed by 5 minutes of reperfusion) reduces infarct size by depleting cardiac glycogen stores and attenuating the degree of intracellular acidosis during subsequent prolonged left coronary artery occlusion, preconditioned and control rats were subjected to 45 minutes of left coronary artery occlusion and 120 minutes of reflow immediately after preconditioning (groups 1P and 1C, respectively) or after 30 minutes (groups 2P+30m and 2C), 1 hour (groups 3P+60m and 3C), or 6 hours (groups 4P+360m and 4C) of nonischemic recovery after preconditioning but before prolonged ischemia. In each group, cardiectomy was performed in selected rats immediately before prolonged ischemia for cardiac glycogen assay. In selected animals, 31P magnetic resonance spectroscopy was performed to monitor intracellular pH and measure high-energy phosphate levels during ischemia and reperfusion. Group 1P rats demonstrated marked glycogen depletion after preconditioning compared with controls (0.72 +/- 0.39 [n = 9] versus 5.67 +/- 1.73 [n = 12] mg glucose/g wet wt; p < 0.001 versus group 1C) that was associated with attenuation of intracellular acidosis during ischemia, as measured by 31P magnetic resonance spectroscopy (6.8 +/- 0.3 [n = 11] versus 6.2 +/- 0.3 [n = 9] pH units; p < 0.01), and marked infarct size reduction (0.3 +/- 0.6% [n = 7] versus 38.1 +/- 11.3% [n = 7], infarct size divided by risk area; p < 0.0001). During ischemia, there were no differences in myocardial ATP or phosphocreatine levels or in any hemodynamic determinant of myocardial oxygen demand between groups 1P and 1C. In preconditioned rats that were allowed to recover before ischemia (groups 2P+30m, 3P+60m, and 4P+360m), the time course of glycogen repletion paralleled the loss of protection from ischemic injury. CONCLUSIONS: Glycogen depletion and the attenuation of intracellular acidosis during ischemia appear to be important factors in delaying irreversible injury and reducing infarct size in this animal model of myocardial preconditioning.  相似文献   

13.
It is now well established that pre-treatment with sublethal ischemia, followed by reperfusion, will delay myocardial necrosis during a later sustained ischemic episode, termed ischemic preconditioning (IPC); this has been confirmed experimentally and clinically. However, the effects for the senescent heart differ from those of the mature heart at both functional and cellular levels which have not yet been determined. Comparisons were made between aged (> 135 weeks, n = 18) and mature (15 approximately 20 weeks, n = 8) rabbit hearts which underwent 30 min. normothermic global ischemia with 120 min reperfusion in a buffer-perfused isolated, paced heart model, and the effects of IPC on post-ischemic functional recovery and infarct size were investigated. Ischemic preconditioned hearts (n = 6) were subjected to one cycle of 5 min. global ischemia and 5 min. reperfusion prior to global ischemia. Global ischemic hearts (n = 6) were subjected to 30 min. global ischemia without intervention. Control hearts (n = 6) were subjected to perfusion without ischemia. Post-ischemic functional recovery was better in the ischemic preconditioned hearts than in the global ischemic hearts in both aged and mature hearts. However, in the aged hearts, post-ischemic functional recovery was slightly reduced compared to that of the mature hearts, and only the coronary flow was well-preserved. In the mature hearts, myocardial infarction in the ischemic preconditioned hearts (14.9 +/- 1.3%) and in the control hearts (1.0 +/- 0.3%) was significantly decreased (p < 0.01) compared to that of the global ischemic hearts (32.9 +/- 5.1%). In the aged hearts, myocardial infarction in the ischemic preconditioned hearts (18.9 +/- 2.7%) and in the control hearts (1.1 +/- 0.6%) was significantly decreased (p < 0.001) compared to that of the global ischemic hearts (37.6 +/- 3.7%). The relationship between infarct size and post-ischemic functional recovery of left ventricularpeak developed pressure (LVDP) was linear and the correlation negative, with r = -0.934 (p < 0.001) and -0.875 (p < 0.001) for mature and aged hearts respectively. The data suggest that, in the senescent myocardium, the cellular pathways involved ischemic preconditioning responses that were post-ischemic, and that functional recovery was worse as compared to that of the mature myocardium. Furthermore, the effects of post-ischemic functional recovery became consistently weaker during the control period of 120 min. reperfusion after a prolonged ischemic insult in a buffer perfused isolated rabbit model. However, the effects of infarct size limitation were well-preserved in both senescent and mature myocardia.  相似文献   

14.
To compare the effects of a potent rat renin inhibitor peptide (RIP) and angiotensin-converting enzyme (ACE) inhibitor on the intrarenal and plasma renin-angiotensin systems, anesthetized Sprague-Dawley rats were treated with an infusion of vehicle, ramipril or graded doses of the rat RIP (acetyl-His-Pro-Phe-Val-statine-Leu-he-NH2) for 30 min. Kidney and plasma samples were processed rapidly, and angiotensin peptides were separated by high-pressure liquid chromatography before measurement by a double-antibody radioimmunoassay. Blood pressure fell identically, by approximately 15 mm Hg, after either the RIP or ACE inhibitor. Plasma Ang II was 83 +/- 20 fmol/ml in vehicle-treated rats and fell to 28 +/- 3 fmol/ml with ramipril (10 mg/kg), the dose-response zenith. Plasma Ang II was significantly lower, 9 +/- 2 fmol/ml, with the highest RIP dose used. Control renal tissue Ang II was 183 +/- 18 fmol/g, fell with ramipril to 56 +/- 6 and then fell to a similar level (47 +/- 10 fmol/g) after RIP. Ang I/Ang II ratios indicated the expected sharp drop in Ang I conversion after ramipril in plasma and tissue. RIP did not influence conversion rate in plasma but was associated with an unanticipated fall in Ang I conversion in renal tissue, perhaps reflecting local aspartyl protease inhibition, which contributes to normal Ang II formation. Also unanticipated was a rise in tissue Ang I concentration during RIP administration. Renin inhibition is more effective than ACE inhibition in blocking systemic Ang II formation, supporting studies suggesting that quantitatively important non-ACE-dependent pathways participate in Ang II formation.  相似文献   

15.
BACKGROUND: This study was designed to evaluate the adenosine-triphosphate-sensitive potassium channel opener pinacidil as a blood cardioplegic agent. METHODS: Using a blood-perfused, parabiotic, Langendorff rabbit model, hearts underwent 30 minutes of normothermic ischemia protected with blood cardioplegia (St. Thomas' solution [n = 8] or Krebs-Henseleit solution with pinacidil [50 micromol/L, n = 81) and 30 minutes of reperfusion. Percent recovery of developed pressure, mechanical arrest, electrical arrest, reperfusion ventricular fibrillation, percent tissue water, and myocardial oxygen consumption were compared. RESULTS: The percent recovery of developed pressure was not different between the groups (52.3 +/- 5.9 and 52.8 +/- 6.9 for hyperkalemic and pinacidil cardioplegia, respectively). Pinacidil cardioplegia was associated with prolonged electrical and mechanical activity (14.4 +/- 8.7 and 6.1 +/- 3.9 minutes), compared with hyperkalemic cardioplegia (1.1 +/- 0.6 and 1.1 +/- 0.6 minutes, respectively; p < 0.05). Pinacidil cardioplegia was associated with a higher reperfusion myocardial oxygen consumption (0.6 +/- 0.1 versus 0.2 +/- 0.0 mL/100 g myocardium/beat; p < 0.05) and a higher percent of tissue water (79.6% +/- 0.7% versus 78.6% +/- 1.2%; p < 0.05). CONCLUSIONS: Systolic recovery was not different between groups, demonstrating comparable effectiveness of pinacidil and hyperkalemic warm blood cardioplegia.  相似文献   

16.
The aim of this study was to determine whether adenosine receptor blockade before ischemia would enhance the degree of stunning and induce a sustained decrease in glucose uptake after reperfusion. METHODS: Stunning was induced in 14 anesthetized swine by partially occluding the left anterior descending artery (LAD) for 20 min (> 80% flow reduction). Seven animals were pretreated with the nonspecific adenosine receptor blocker 8-phenyltheophylline (8-PT; 5 mg/kg), which decreased reactive hyperemia by an average of 38%. Myocardial glucose uptake was assessed 1 hr following reperfusion with PET and the glucose analog 18F-fluorodeoxyglucose (FDG). RESULTS: Before ischemia, systolic shortening in the LAD region was 15% +/- 6% in the control group and 16% +/- 4% in the 8-PT group and in both groups was reduced to - 1% +/- 2% during ischemia. After reperfusion, systolic shortening was 7% +/- 3% in the control group and 2% +/- 3% in the 8-PT group (p < 0.05). Myocardial oxygen consumption before ischemia was 4.58 +/- 3.03 micromol/min/g in the control group and 4.44 +/- 1.83 micromol/min/g in the 8-PT group (ns) and neither were different after reperfusion. In the postischemic LAD region, myocardial glucose uptake was 0.18 +/- 0.15 micromol/min/g in the control group and was similar to that of the 8-PT group (0.17 +/- 0.08 micromol/min/g; ns). CONCLUSION: The nonspecific adenosine blocker 8-PT enhanced the degree of stunning when given before ischemia but did not induce a sustained effect on myocardial glucose uptake after reperfusion.  相似文献   

17.
Activation of myocardial A1 adenosine receptors (A1AR) protects the heart from ischemic injury. In this study transgenic mice were created using the cardiac-specific alpha-myosin heavy chain promoter and rat A1AR cDNA. Heart membranes from two transgene positive lines displayed approximately 1,000-fold overexpression of A1AR (6,574 +/- 965 and 10,691 +/- 1,002 fmol per mg of protein vs. 8 +/- 5 fmol per mg of protein in control hearts). Compared with control hearts, transgenic Langendorff-perfused hearts had a significantly lower intrinsic heart rate (248 beats per min vs. 318 beats per min, P < 0. 05), lower developed tension (1.2 g vs. 1.6 g, P < 0.05), and similar coronary resistance. The difference in developed tension was eliminated by pacing. Injury of control hearts during global ischemia, indexed by time-to-ischemic contracture, was accelerated by blocking adenosine receptors with 50 microM 8-(p-sulfophenyl) theophylline but was unaffected by addition of 20 nM N6-cyclopentyladenosine, an A1AR agonist. Thus A1ARs in ischemic myocardium are presumably saturated by endogenous adenosine. Overexpressing myocardial A1ARs increased time-to-ischemic contracture and improved functional recovery during reperfusion. The data indicate that A1AR activation by endogenous adenosine affords protection during ischemia, but that the response is limited by A1AR number in murine myocardium. Overexpression of A1AR affords additional protection. These data support the concept that genetic manipulation of A1AR expression may improve myocardial tolerance to ischemia.  相似文献   

18.
19.
In adult hearts, ischemic preconditioning (PC) has been shown to decrease ischemia-induced changes in intracellular pH (pHi) and [Ca] ([Ca]i) and decrease associated injury. These results are consistent with the interpretation that PC decreases the stimulus for Na uptake via Na/H exchange, thereby decreasing intracellular Na (Nai) accumulation, and thus decreasing the change in force driving Na/Ca exchange, which otherwise contributes to ischemia-induced increases in [Ca]i. Given documented age-related differences in myocardial responses to ischemia, we tested the hypothesis that in newborn hearts, PC will diminish intracellular [H], Nai, and [Ca]i during ischemia/reperfusion. NMR was used to measure pHi, Nai, [Ca]i, ATP, and PCr in isolated newborn (4-7 days) rabbit hearts Langendorff-perfused with Krebs-Henseleit solution equilibrated with 95% O2/5% CO2 at 36+/-1 degrees C. Control hearts were perfused 30 min before initiating 40 min global ischemia followed by 40 min reperfusion. PC hearts were treated the same except four 5-min intervals of ischemia each followed by 10 min of perfusion which preceded global ischemia. At end ischemia, pHi was higher in PC than control hearts (6.31+/-0.03 v 5.83+/-0.05; P<0.05). Similarly, PC diminished Nai-accumulation during ischemia and reperfusion (P<0.05). Control Nai rose from 16.2+/-2.6 to 108.8+/-10.3 (mEq/kg dry weight) and recovered to 55.2+/-10.1 and the corresponding values for PC hearts were 25.6+/-6.2, 70.0+/-7.9 and 21.9+/-5.2. PC also improved [Ca]i recovery during reperfusion (P<0.05). Control [Ca]i rose from 418+/-43 to 1100+/-78 (nm/l) and recovered to 773+/-63, whereas in PC hearts the values were 382+/-40, 852+/-136 and 371+/-45, respectively. In addition, PC decreased coronary resistance during reperfusion (P<0.05) as reflected by lower perfusion pressures under constant flow conditions (65.9+/-1.5 v 56. 1+/-4.1 mmHg at end of reperfusion). Finally, PC improved recovery of left-ventricular developed pressure (LVDP-43.8+/-12.0 v 17.2+/-3. 0% of control; P<0.05) and diminished CK release (607+/-245 v 2432+/-639 IU/g dry weight; P<0.05) during reperfusion. The results are consistent with the hypothesis.  相似文献   

20.
A radioimmunoassay has been established to measure urinary aquaporin-2 excretion (u-AQP2). To elucidate how u-AQP2 changes when endogenous vasopressin is increased independently of plasma osmolality, we estimated u-AQP2 during general anesthesia for surgery. We collected urine and blood samples from 50 patients before and 90 and 180 min after anesthetic induction. Plasma (29.1+/-12.6 pg/mL) and urinary (565.1+/-207.0 ng/gCr) vasopressin levels were markedly increased after anesthetic induction. Although no significant alteration of plasma osmolality or serum sodium concentration was observed during 180 min, u-AQP2 was significantly increased (preinduction 224.5+/-24.2 fmol/ mgCr; 90 min 243.3+/-31.8; 180 min 331.4+/-45.9), paralleling an increase of plasma and urinary vasopressin. The plasma vasopressin concentration after anesthetic induction was far in excess of that expected based on plasma osmolality. Individual plasma and urinary vasopressin concentrations correlated significantly with u-AQP2. At 180 min after anesthesia, plasma osmolality did not change, but urine osmolality decreased despite increased u-AQP2, and a preanesthetic positive correlation between urine osmolality and u-AQP2 disappeared. Thus, although u-AQP2 correlates with increased intrinsic vasopressin levels, the increase in u-AQP2 did not directly contribute to urine concentration. Apparently, an escape from the physiologic effects of high vasopressin level occurs during anesthesia via a mechanism independent of aquaporin-2. We conclude that the anesthetic would interfere with the urinary concentrating capacity at the level of AQP2-action. IMPLICATIONS: The excessive increase of intrinsic vasopressin exactly augmented urinary aquaporin-2 excretion, resulting in urine concentration; however, anesthesia seemed to modify this process possibly by interfering with the aquaporin-2 action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号