共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
3.
通过对电力负荷变化规律和影响因素的分析,集结多种单个模型所包含的信息,进行最佳组合,提出了在单一模型预测结果基础之上的基于神经网络的优化组合预测,确定了网络训练样本和隐含层的个数,可使提前一天的预测精度较传统预测模型有较大提高。并当发现某一点预测误差过大,可对该点利用文中提出的误差灰色模型修正预测结果,这样不仅可提高整体预测精度,更重要的是减小最大预测误差值和减少大预测误差发生的次数。仿真结果验证了该预测模型的可行性和有效性。 相似文献
4.
根据负荷预测基本流程,分别对数据预处理、模型选取、模型优化分别进行了总结分析。首先对传统的数据处理方法进行了概述,并简要介绍了新的数据处理方法。其次,将现有的短期负荷预测方法分为经典方法、传统方法和智能方法,综合分析了现有预测方法的应用原理,详细分析和比较预测方法的优点和不足之处,为了提高预测的精度,一些新的方法就因运而生,目的在于提高预测精度和适应相应各种运行条件。再次,总结分析了传统的预测优化模型,并简要介绍了现有的一些新的优化模型,这些新的优化模型计算结果相比于传统的模型精确度较高,分析了新优化模型的优点和不足之处。文章最后对了未来电力系统负荷预测提出了展望,在进行短期负荷预测时应该考虑电力市场、新能源、电动汽车相关因素的影响。 相似文献
5.
7.
8.
对基于求和自回归滑动平均模型(ARIMA模型)的软件可靠性预测方法进行了研究,提出了将软件可靠性失效数据看作时间序列,通过建立相应的ARIMA(p,d,q)模型来进行预测的方法。对该方法的基本思想、模型表述、建模流程进行了详细介绍,并依据上述方法选用Musa经典数据集中的Project SS2中的数据进行了预测,结果表明预测的准确性较高,说明该方法适用于软件可靠性预测。 相似文献
9.
随着电力物联网的不断发展,用户级电力负荷预测在电力需求侧管理中呈现出日益重要的作用.为了提高用户级电力负荷预测的性能,本文提出一种基于K-means聚类与卷积神经网络特征提取的短期电力负荷预测模型.首先,利用K-means将用户聚为两类:对于日相关性强的用户,将相邻时刻和日周期的历史负荷作为输入,采用CNN模型提取特征进行预测;对于日相关性弱的用户,仅将相邻时刻的历史负荷输入到CNN模型进行预测.为了验证所提出算法的性能,我们在实际的用户负荷数据上做了实验,并与随机森林、支持向量回归机进行对比,结果表明本文所构建模型的预测平均绝对百分误差降低了20%以上. 相似文献
10.
11.
模糊神经网络在电力短期负荷预测中的应用 总被引:5,自引:1,他引:5
提出用于电力短期负荷预测(SILF)的一种模糊神经网络(FNN)方法,该方法针对BP网络收敛速度慢、易导致局部极小值的缺点,将考虑气候、温度、星期类型等影响因素的模糊技术与快速二阶BP网络相结合,并以南方电网负荷预测为例,应用MATLAB蚀语言对系统进行仿真训练,测试结果表明,该方法具有较高的预测精度。 相似文献
12.
Musaed Alrashidi 《计算机系统科学与工程》2023,46(1):371-387
The tendency toward achieving more sustainable and green buildings turned several passive buildings into more dynamic ones. Mosques are the type of buildings that have a unique energy usage pattern. Nevertheless, these types of buildings have minimal consideration in the ongoing energy efficiency applications. This is due to the unpredictability in the electrical consumption of the mosques affecting the stability of the distribution networks. Therefore, this study addresses this issue by developing a framework for a short-term electricity load forecast for a mosque load located in Riyadh, Saudi Arabia. In this study, and by harvesting the load consumption of the mosque and meteorological datasets, the performance of four forecasting algorithms is investigated, namely Artificial Neural Network and Support Vector Regression (SVR) based on three kernel functions: Radial Basis (RB), Polynomial, and Linear. In addition, this research work examines the impact of 13 different combinations of input attributes since selecting the optimal features has a major influence on yielding precise forecasting outcomes. For the mosque load, the (SVR-RB) with eleven features appeared to be the best forecasting model with the lowest forecasting errors metrics giving RMSE, nRMSE, MAE, and nMAE values of 4.207 kW, 2.522%, 2.938 kW, and 1.761%, respectively 相似文献
13.
利用线性最小方差估计方法,推导出多维ARMA模型的新息定理,并依据该定理得出仅需AR参数的线性最小方差新息预测公式,这在计算上大为简化,同时又保证有一定的精度。最后给出了仿真实例。 相似文献
14.
本文提出利用族群进化算法来有效优化多项式回归分析模型的参数以进行短期电力负荷预测。选择某地区2002年至2009年的用电量为训练数据,将本文提出方法的预测结果与季节指数模型的预测结果进行对比,本文提出方法的拟合值与实际值的平均相对误差较季节指数模型小0.66%。对2010年1月份到10月份的用电量,本文提出方法的预测值与实际值的平均误差仅为1.46%,比季节指数模型小2.3%。此实验结果显示基于族群进化算法优化的多项式回归分析模型不仅是可行的,而且是有效的,它显著提高了对短期负荷预测的准确性和可靠性。 相似文献
15.
16.
17.
18.
19.
测试算法评估及可测性预报系统使用回归分析和遗传算法,为测试生成算法建立可测性参数的预报模型,使得对于给定电路,不必实际运行各测试生成算法,就可以快速评估并预报出最适合的算法。本文整体介绍了这一系统,并对其中各主要模块作了重点描述。 相似文献