首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we study quadrature formulas of the types (1) $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - 1/2} f(x)dx = C_n^{ (\lambda )} \sum\limits_{i = 1}^n f (x_{n,i} ) + R_n \left[ f \right]} ,$$ (2) $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - 1/2} f(x)dx = A_n^{ (\lambda )} \left[ {f\left( { - 1} \right) + f\left( 1 \right)} \right] + K_n^{ (\lambda )} \sum\limits_{i = 1}^n f (\bar x_{n,i} ) + \bar R_n \left[ f \right]} ,$$ with 0<λ<1, and we obtain inequalities for the degreeN of their polynomial exactness. By using such inequalities, the non-existence of (1), with λ=1/2,N=n+1 ifn is even andN=n ifn is odd, is directly proved forn=8 andn≥10. For the same value λ=1/2 andN=n+3 ifn is evenN=n+2 ifn is odd, the formula (2) does not exist forn≥12. Some intermediary results regarding the first zero and the corresponding Christoffel number of ultraspherical polynomialP n (λ) (x) are also obtained.  相似文献   

2.
K. J. Förster  K. Petras 《Calcolo》1994,31(1-2):1-33
For ultraspherical weight functions ωλ(x)=(1–x2)λ–1/2, we prove asymptotic bounds and inequalities for the variance Var(Q n G ) of the respective Gaussian quadrature formulae Q n G . A consequence for a large class of more general weight functions ω and the respective Gaussian formulae is the following asymptotic result, $$\mathop {lim}\limits_{n \to \infty } n \cdot Var\left( {Q_n^G } \right) = \pi \int_{ - 1}^1 {\omega ^2 \left( x \right)\sqrt {1 - x^2 } dx.} $$   相似文献   

3.
In this paper we study quadrature formulas of the form $$\int\limits_{ - 1}^1 {(1 - x)^a (1 + x)^\beta f(x)dx = \sum\limits_{i = 0}^{r - 1} {[A_i f^{(i)} ( - 1) + B_i f^{(i)} (1)] + K_n (\alpha ,\beta ;r)\sum\limits_{i = 1}^n {f(x_{n,i} ),} } } $$ (α>?1, β>?1), with realA i ,B i ,K n and real nodesx n,i in (?1,1), valid for prolynomials of degree ≤2n+2r?1. In the first part we prove that there is validity for polynomials exactly of degree2n+2r?1 if and only if α=β=?1/2 andr=0 orr=1. In the second part we consider the problem of the existence of the formula $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} f(x)dx = A_n f( - 1) + B_n f(1) + C\sum\limits_{i = 1}^n {f(x_{n,i} )} }$$ for polynomials of degree ≤n+2. Some numerical results are given when λ=1/2.  相似文献   

4.
Dr. M. Sieveking 《Computing》1972,10(1-2):153-156
An algorithm is given to compute a solution (b 0, ...,b n) of $$\sum\limits_0^n {a_i t^i } \sum\limits_0^n {b_i t^i } \equiv \sum\limits_0^n {c_i t^i } (t^{n + 1} )$$ froma 0, ..., an, c0, ..., cn. It needs less than 7n multiplications, where multiplications with a skalar from an infinite subfield are not counted.  相似文献   

5.
P. Baratella 《Calcolo》1977,14(3):237-242
In this paper we study the remainder term of a quadrature formula of the form $$\int\limits_{ - 1}^1 {f(x)dx = A_n \left[ {f( - 1) + f(1)} \right] + C_n \sum\limits_{i = 1}^n {f(x_{n,i} ) + R_n \left[ f \right],} } $$ , withx x,i -1,1, andR n [f]=0 whenf(x) is a polynomial of degree ≤n+3 ifn is even, or ≤n+2 ifn is odd. Such a formula exists only forn=1(1)11. It is shown that, iff(x)∈ C(h+1) [-1,1], (h=n+3 orn+2), thenR n [f]=f h+1 (τ)·± n . The values α n are given.  相似文献   

6.
F. Costabile 《Calcolo》1974,11(2):191-200
For the Tschebyscheff quadrature formula: $$\int\limits_{ - 1}^1 {\left( {1 - x^2 } \right)^{\lambda - 1/2} f(x) dx} = K_n \sum\limits_{k = 1}^n {f(x_{n,k} )} + R_n (f), \lambda > 0$$ it is shown that the degre,N, of exactness is bounded by: $$N \leqslant C(\lambda )n^{1/(2\lambda + 1)} $$ whereC(λ) is a convenient function of λ. For λ=1 the complete solution of Tschebyscheff's problem is given.  相似文献   

7.
L. Rebolia 《Calcolo》1973,10(3-4):245-256
The coefficientsA hi and the nodesx mi for «closed” Gaussian-type quadrature formulae $$\int\limits_{ - 1}^1 {f(x)dx = \sum\limits_{h = 0}^{2_8 } {\sum\limits_{i = 0}^{m + 1} {A_{hi} f^{(h)} (x_{mi} ) + R\left[ {f(x)} \right]} } } $$ withx m0 =?1,x m, m+1 =1 andR[f(x)]=0 iff(x) is a polinomial of degree at most2m(s+1)+2(2s+1)?1, have been tabulated for the cases: $$\left\{ \begin{gathered} s = 1,2 \hfill \\ m = 2,3,4,5 \hfill \\ \end{gathered} \right.$$ .  相似文献   

8.
For a nonhomogeneous linear ordinary differential equation Ly(x) = f(x) with polynomial coefficients and a holonomic right-hand side, a set of points x = a is found where a power series solution $y(x) = \sum\nolimits_{n = 0}^\infty {c_n (x - a)} ^n $ with hypergeometric coefficients exists (starting from some number, the ratio c n + 1/c n is a rational function of n).  相似文献   

9.
We relate the exponential complexities 2 s(k)n of $\textsc {$k$-sat}$ and the exponential complexity $2^{s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))n}$ of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ (the problem of evaluating quantified formulas of the form $\forall\vec{x} \exists\vec{y} \textsc {F}(\vec {x},\vec{y})$ where F is a 3-cnf in $\vec{x}$ variables and $\vec{y}$ variables) and show that s(∞) (the limit of s(k) as k→∞) is at most $s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))$ . Therefore, if we assume the Strong Exponential-Time Hypothesis, then there is no algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ running in time 2 cn with c<1. On the other hand, a nontrivial exponential-time algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ would provide a $\textsc {$k$-sat}$ solver with better exponent than all current algorithms for sufficiently large k. We also show several syntactic restrictions of the evaluation problem $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ have nontrivial algorithms, and provide strong evidence that the hardest cases of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ must have a mixture of clauses of two types: one universally quantified literal and two existentially quantified literals, or only existentially quantified literals. Moreover, the hardest cases must have at least n?o(n) universally quantified variables, and hence only o(n) existentially quantified variables. Our proofs involve the construction of efficient minimally unsatisfiable $\textsc {$k$-cnf}$ s and the application of the Sparsification lemma.  相似文献   

10.
The purpose of this paper is to find a class of weight functions μ for which there exist quadrature formulae of the form (1) $$\int_{ - 1}^1 {\mu (x) f(x) dx \approx \sum\limits_{k = 1}^n {(a_k f(x_k ) + b_k f''(x_k ))} }$$ , which are precise for every polynomial of degree 2n.  相似文献   

11.
For a finite alphabet ∑ we define a binary relation on \(2^{\Sigma *} \times 2^{2^{\Sigma ^* } } \) , called balanced immunity. A setB ? ∑* is said to be balancedC-immune (with respect to a classC ? 2Σ* of sets) iff, for all infiniteL εC, $$\mathop {\lim }\limits_{n \to \infty } \left| {L^{ \leqslant n} \cap B} \right|/\left| {L^{ \leqslant n} } \right| = \tfrac{1}{2}$$ Balanced immunity implies bi-immunity and in natural cases randomness. We give a general method to find a balanced immune set'B for any countable classC and prove that, fors(n) =o(t(n)) andt(n) >n, there is aB εSPACE(t(n)), which is balanced immune forSPACE(s(n)), both in the deterministic and nondeterministic case.  相似文献   

12.
In the first part of this work, we derive compact numerical quadrature formulas for finite-range integrals $I[f]=\int^{b}_{a}f(x)\,dx$ , where f(x)=g(x)|x?t| ?? , ?? being real. Depending on the value of ??, these integrals are defined either in the regular sense or in the sense of Hadamard finite part. Assuming that g??C ??[a,b], or g??C ??(a,b) but can have arbitrary algebraic singularities at x=a and/or x=b, and letting h=(b?a)/n, n an integer, we derive asymptotic expansions for ${T}^{*}_{n}[f]=h\sum_{1\leq j\leq n-1,\ x_{j}\neq t}f(x_{j})$ , where x j =a+jh and t??{x 1,??,x n?1}. These asymptotic expansions are based on some recent generalizations of the Euler?CMaclaurin expansion due to the author (A.?Sidi, Euler?CMaclaurin expansions for integrals with arbitrary algebraic endpoint singularities, in Math. Comput., 2012), and are used to construct our quadrature formulas, whose accuracies are then increased at will by applying to them the Richardson extrapolation process. We pay particular attention to the case in which ??=?2 and f(x) is T-periodic with T=b?a and $f\in C^{\infty}(-\infty,\infty)\setminus\{t+kT\}^{\infty}_{k=-\infty}$ , which arises in the context of periodic hypersingular integral equations. For this case, we propose the remarkably simple and compact quadrature formula $\widehat{Q}_{n}[f]=h\sum^{n}_{j=1}f(t+jh-h/2)-\pi^{2} g(t)h^{-1}$ , and show that $\widehat{Q}_{n}[f]-I[f]=O(h^{\mu})$ as h??0 ???>0, and that it is exact for a class of singular integrals involving trigonometric polynomials of degree at most n. We show how $\widehat{Q}_{n}[f]$ can be used for solving hypersingular integral equations in an efficient manner. In the second part of this work, we derive the Euler?CMaclaurin expansion for integrals $I[f]=\int^{b}_{a} f(x)dx$ , where f(x)=g(x)(x?t) ?? , with g(x) as before and ??=?1,?3,?5,??, from which suitable quadrature formulas can be obtained. We revisit the case of ??=?1, for which the known quadrature formula $\widetilde{Q}_{n}[f]=h\sum^{n}_{j=1}f(t+jh-h/2)$ satisfies $\widetilde{Q}_{n}[f]-I[f]=O(h^{\mu})$ as h??0 ???>0, when f(x) is T-periodic with T=b?a and $f\in C^{\infty}(-\infty,\infty)\setminus\{t+kT\}^{\infty}_{k=-\infty}$ . We show that this formula too is exact for a class of singular integrals involving trigonometric polynomials of degree at most n?1. We provide numerical examples involving periodic integrands that confirm the theoretical results.  相似文献   

13.
Quadrature formulas of the Clenshaw-Curtis type, based on the “practical” abscissasx k=cos(kπ/n),k=0(1)n, are obtained for the numerical evaluation of Cauchy principal value integrals \(\int\limits_{ - 1}^1 {(x - a)^{ - 1} } f(x) dx, - 1< a< 1\) .  相似文献   

14.
Quadrature formulas based on the “practical” abscissasx k=cos(k π/n),k=0(1)n, are obtained for the numerical evaluation of the weighted Cauchy principal value integrals $$\mathop {\rlap{--} \smallint }\limits_{ - 1}^1 (1 - x)^\alpha (1 + x)^\beta (f(x))/(x - a)){\rm E}dx,$$ where α,β>?1 andaε(?1, 1). An interesting problem concerning these quadrature formulas is their convergence for a suitable class of functions. We establish convergence of these quadrature formulas for the class of functions which are Hölder-continuous on [?1, 1].  相似文献   

15.
The discrete logarithm problem modulo a composite??abbreviate it as DLPC??is the following: given a (possibly) composite integer n??? 1 and elements ${a, b \in \mathbb{Z}_n^*}$ , determine an ${x \in \mathbb{N}}$ satisfying a x ?=?b if one exists. The question whether integer factoring can be reduced in deterministic polynomial time to the DLPC remains open. In this paper we consider the problem ${{\rm DLPC}_\varepsilon}$ obtained by adding in the DLPC the constraint ${x\le (1-\varepsilon)n}$ , where ${\varepsilon}$ is an arbitrary fixed number, ${0 < \varepsilon\le\frac{1}{2}}$ . We prove that factoring n reduces in deterministic subexponential time to the ${{\rm DLPC}_\varepsilon}$ with ${O_\varepsilon((\ln n)^2)}$ queries for moduli less or equal to n.  相似文献   

16.
It is shown that the following modification of the Steffensen procedurex n+1=x n ?k s (x n )f(x n ) (f[x n ,x n ?f(x n )])?1 (n=0,1,...) withk s (x)=(1?z s (x))?1,z s (x)=f(x) 2f[x?f(x),x,x+f(x)]×(f[x,x?f(x)])?2 is quadratically convergent to the root of the equation \(f(x) = (x - \bar x)^p g(x) = 0(p > 0,g(\bar x) \ne 0)\) . Furthermore \(\mathop {\lim }\limits_{n \to \infty } k_s (x_n ) = p\) holds.  相似文献   

17.
We examine the problem of routing wires of a VLSI chip, where the pins to be connected are arranged in a regular rectangular array. We obtain tight bounds for the worst-case “channel-width” needed to route ann×n array, and develop provably good heuristics for the general case. Single-turn routings are proved to be near-optimal in the worst-case. A central result of our paper is a “rounding algorithm” for obtaining integral approximations to solutions of linear equations. Given a matrix A and a real vector x, then we can find an integral x such that for alli, ¦x i -x i ¦ <1 and (Ax) i -(Ax) i <Δ. Our error bound Δ is defined in terms of sign-segregated column sums of A: $$\Delta = \mathop {\max }\limits_j \left( {\max \left\{ {\sum\limits_{i:a_{ij} > 0} {a_{ij} ,} \sum\limits_{i:a_{ij}< 0} { - a_{ij} } } \right\}} \right).$$   相似文献   

18.
We study certain properties of Rényi entropy functionals $H_\alpha \left( \mathcal{P} \right)$ on the space of probability distributions over ?+. Primarily, continuity and convergence issues are addressed. Some properties are shown to be parallel to those known in the finite alphabet case, while others illustrate a quite different behavior of the Rényi entropy in the infinite case. In particular, it is shown that for any distribution $\mathcal{P}$ and any r ∈ [0,∞] there exists a sequence of distributions $\mathcal{P}_n$ converging to $\mathcal{P}$ with respect to the total variation distance and such that $\mathop {\lim }\limits_{n \to \infty } \mathop {\lim }\limits_{\alpha \to 1 + } H_\alpha \left( {\mathcal{P}_n } \right) = \mathop {\lim }\limits_{\alpha \to 1 + } \mathop {\lim }\limits_{n \to \infty } H_\alpha \left( {\mathcal{P}_n } \right) + r$ .  相似文献   

19.
Seki et al. (Theor. Comput. Sci. 88(2):191–229, 1991) showed that every m-multiple context-free language L is weakly 2m-iterative in the sense that either L is finite or L contains a subset of the form \(\{ u_{0} w_{1}^{i} u_{1} \cdots w_{2m}^{i} u_{2m} \mid i \in \mathbb {N}\}\) , where w 1?w 2n ε. Whether every m-multiple context-free language L is 2m-iterative, that is to say, whether all but finitely many elements z of L can be written as z=u 0 w 1 u 1?w 2m u 2m with w 1?w 2m ε and \(\{ u_{0} w_{1}^{i} u_{1} \cdots w_{2m}^{i} u_{2m} \mid i \in \mathbb {N}\} \subseteq L\) , has been open. We show that there is a 3-multiple context-free language that is not k-iterative for any k.  相似文献   

20.
To model association fields that underly perceptional organization (gestalt) in psychophysics we consider the problem P curve of minimizing $\int _{0}^{\ell} \sqrt{\xi^{2} +\kappa^{2}(s)} {\rm d}s $ for a planar curve having fixed initial and final positions and directions. Here κ(s) is the curvature of the curve with free total length ?. This problem comes from a model of geometry of vision due to Petitot (in J. Physiol. Paris 97:265–309, 2003; Math. Inf. Sci. Humaines 145:5–101, 1999), and Citti & Sarti (in J. Math. Imaging Vis. 24(3):307–326, 2006). In previous work we proved that the range $\mathcal{R} \subset\mathrm{SE}(2)$ of the exponential map of the underlying geometric problem formulated on SE(2) consists of precisely those end-conditions (x fin,y fin,θ fin) that can be connected by a globally minimizing geodesic starting at the origin (x in,y in,θ in)=(0,0,0). From the applied imaging point of view it is relevant to analyze the sub-Riemannian geodesics and $\mathcal{R}$ in detail. In this article we
  • show that $\mathcal{R}$ is contained in half space x≥0 and (0,y fin)≠(0,0) is reached with angle π,
  • show that the boundary $\partial\mathcal{R}$ consists of endpoints of minimizers either starting or ending in a cusp,
  • analyze and plot the cones of reachable angles θ fin per spatial endpoint (x fin,y fin),
  • relate the endings of association fields to $\partial\mathcal {R}$ and compute the length towards a cusp,
  • analyze the exponential map both with the common arc-length parametrization t in the sub-Riemannian manifold $(\mathrm{SE}(2),\mathrm{Ker}(-\sin\theta{\rm d}x +\cos\theta {\rm d}y), \mathcal{G}_{\xi}:=\xi^{2}(\cos\theta{\rm d}x+ \sin\theta {\rm d}y) \otimes(\cos\theta{\rm d}x+ \sin\theta{\rm d}y) + {\rm d}\theta \otimes{\rm d}\theta)$ and with spatial arc-length parametrization s in the plane $\mathbb{R}^{2}$ . Surprisingly, s-parametrization simplifies the exponential map, the curvature formulas, the cusp-surface, and the boundary value problem,
  • present a novel efficient algorithm solving the boundary value problem,
  • show that sub-Riemannian geodesics solve Petitot’s circle bundle model (cf. Petitot in J. Physiol. Paris 97:265–309, [2003]),
  • show a clear similarity with association field lines and sub-Riemannian geodesics.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号