首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
研究了含Nd6~9at%和Fe>85at%的低钕高铁合金的快淬和晶化热处理,以及对其磁性能的影响。  相似文献   

2.
在常规晶化退火工艺条件下纳米双相永磁合金快淬非晶薄带的晶化过程中,α-Fe相通常在低温优先析出,这导致了α-Fe晶粒过于粗大并严重损害了材料磁性能。针对这一问题,近期有一些学者对极端晶化条件下非晶快淬薄带的晶化行为和机制进行了仔细的研究。本文对这些研究进行了综述和分析。  相似文献   

3.
采用熔体快淬及晶化退火工艺制备了纳米双相(Nd,Pr)2Fe14B/α-Fe型磁体,研究了Nb和Zr的添加对磁体磁性能、微观结构和晶化行为的影响。结果表明:添加Nb和Zr可提高α—Fe相的晶化温度,抑制α—Fe的析出和长大,避免亚稳相的形成,从而提高硬磁相的体积百分比。Nb和Zr复合添加能细化晶粒,增强硬磁相和软磁相问的交换耦合作用,显著提高纳米晶双相永磁合金的磁性能。合金(Nd,Pr)2Fe14B/α-Fe经过最佳热处理后,磁性能达到Br=1.10T,iHc=534.2kA/m,(BH)max=143.6kJ/m^3。  相似文献   

4.
利用熔体快淬和晶化处理的方法制备了快淬Fe3B/Nd2Fe14B永磁材料。采用XRD,DTA,VSM等方法对合金的晶化行为和磁性能进行研究。结果表明:对于Fe3B/Nd2Fe14B熔体快淬永磁粉末,升温速率对各相的析出和分解温度有一定的影响。完全过淬的Nd4.5Fe77B18.5和Nd4Fe77Cr0.5B18.5合金熔体快淬粉在进行973K,7min晶化处理过程中,首先形成Nd2Fe23B3相,然后Nd2Fe23B3相发生分解,其产物为Fe3B/Nd2Fe14B,此后再没有发生其它的相转变。当晶化温度大于953K,保温10min后,样品的剩磁、矫顽力和最大磁能积明显提高。微量元素Cr的添加对相转变温度有影响,同时可以细化晶粒,提高矫顽力,从而改善材料的永磁性能。  相似文献   

5.
本文对成分为Nd_(12)Fe_(77)Co_5B_6的合金进行快淬后晶化处理,得到的薄片和磁粉用振动样品磁强计(VSM)和X射线衍射仪(XRD)进行性能和结构分析,发现在晶化处理后的薄片中出现明显的磁各向异性。其方向为Nd2Fe(14)B晶体的易磁化轴-c轴方向,这种各向异性有利于获得高性能的粘结快淬NdFeB磁体.  相似文献   

6.
熔体快淬纳米晶Nd—Fe—B基永磁合金   总被引:2,自引:0,他引:2  
  相似文献   

7.
Nb在单相Nd2Fe14B纳米晶合金晶化过程中的作用   总被引:1,自引:0,他引:1  
利用X射线衍射、透射电镜和三维原子探针(three-dimensional atom probe,简称3DAP)等研究Nb在单相Nd2Fe14B纳米晶永磁合金的作用机制.结果表明,Nb的添加提高了合金的非晶形成能力和非晶的热稳定性,使得合金最佳晶化温度升高.三维原子探针分析表明,Nb一方面分布在非晶基体中,另一方面在淬态薄带中存在不同程度的偏聚,这些Nb富集区中存在大量B元素,稀土含量很少,甚至不存在,含有部分Fe元素.Nb富集区的存在阻碍新生Nd2Fe14B相的长大,使晶化后的组织细小且均匀,提高了合金的磁性能.  相似文献   

8.
研究了利用快淬工艺制备纳米晶所采用的合金成分与特定工艺的关系以及各工艺参数对形成纳米晶的影响,并对由纳米晶结构导致的高剩磁现象进行了探讨。  相似文献   

9.
为改善纳米晶交换耦合Nd2Fe14B/α-Fe永磁合金微结构以提高磁性能,用熔体快淬和动态晶化热处理的方法制备了纳米晶交换耦合Nd2Fe14B/α-Fe永磁体,采用XRD和TEM等方法系统研究了动态晶化热处理对Nd10.5(FeCoZr)83.4B6.1永磁体磁性能和显微组织的影响。结果表明:与传统晶化相比,动态晶化可以在相同的晶化温度下缩短晶化时间,同时能细化晶粒,增强晶粒间磁交换耦合作用,提高磁性能。Nd10.5(FeCoZr)83.4B6.1合金快淬薄带经700℃,10min动态晶化热处理后,制得的粘结磁体获得最佳磁性能,剩磁Br=0.685T,内禀矫顽力Hcj=732kA/m,磁感矫顽力Hcb=429kA/m,最大磁能积(BH)m=75kJ/m^3。  相似文献   

10.
Nd2Fe14B/α—Fe纳米晶双相复合永磁合金   总被引:8,自引:1,他引:7  
张敏刚  郭东城 《金属学报》1999,35(7):777-780
采用快淬火及热处理工艺,通过复合添加Dy和Ga,制备了高磁性能的Nd2Fe14B/α-Fe纳米晶双相复合永磁合金,合金最佳磁性能为,Jf=1.161T(11.6kGs),Hci=580.50kA/m(7.30kOe)和(BH)max=162.7kJ/m^3(20.5MGs.Oe)。该合金成分为Nd7.5Dy1Fe85B4.5Ga2,其显微组织由晶粒尺寸约为32nm的硬磁相Nd2Fe14B和16nm  相似文献   

11.
采用搅拌球磨法制备了纳米复相Nd2Fe14B/a—Fe永磁合金。借助X射线衍射(XRD)、差示扫描量热法(DSC)、透射电子显微镜(TEM)等分析方法研究了不同球磨时间及晶化处理温度对合金微观组织和磁性能的影响规律。结果表明:随球磨时间的延长,Nd2Fel4B相及a-Fe相的晶粒尺寸迅速减小,球磨5h后粉末由非晶相和晶粒尺寸约为10nm的a-Fe相组成,当晶化处理温度为650℃,保温时间为30min时,两相的晶粒尺寸比较细小,此时磁性能最好,达到Br=1.06T,Hci=347kA/m,(BH)m=142kJ/m^3。  相似文献   

12.
13.
采用熔体快淬及晶化处理工艺制备Nd11Fe72-xCo8V1.5CrB7.5(x=0,1)纳米晶合金。研究了添加Cr对合金晶化行为和磁性能的影响。结果表明,添加Cr提高了软磁相α-Fe和硬磁相Nd2Fe14B的形成温度,降低了硬磁相Nd2Fe14B的居里温度。同时,添加Cr可细化两相晶粒,提高内禀矫顽力,从而提高最大磁能积。  相似文献   

14.
利用高频感应加热的快速晶化方法,对Nd8Fe86B6非晶带进行了晶化退火处理.采用X射线衍射和TEM对原淬态和晶化后的薄带进行了微观组织的分析,用VSM对淬态和快速晶化后薄带的磁学性能进行了测量.观察了在不同晶化条件下Nd8Fe86B6非晶的结构变化以及对其磁性的影响.试验结果表明,快速加热可使非晶带迅速晶化.加热速度和加热时间显著地影响薄带的组织及磁性能.随着加热速度的提高,α-Fe与Nd2Fe14B两相的析出越趋于接近,但过高的加热速度亦使α-Fe过快长大.在快速晶化过程中,α-Fe的长大速度仍大于Nd2Fe14B,因此过长的加热时间将使得α-Fe过度长大.因此,一个较理想的磁学性能都应有一个适合的加热条件相配合.  相似文献   

15.
添加Nb可提高(Nd0.9Dy0.1)9.5Fe79Co5B6.5(原子百分数,下同)合金的非晶形成能力和快淬薄带的晶化温度,经过710℃晶化处理4min后,快淬薄带的晶粒细小均匀,从而显著提高了快淬薄带的磁性能。三维原子探针(Three-Dimensional Atom Probe,简称3DAP)分析结果表明,含Nb快淬薄带晶化后,在晶界形成了Nb-Fe-B偏聚物,抑制了晶粒长大,细化了晶粒,进而使晶粒间交换耦合作用增强,提高了合金的磁性能。  相似文献   

16.
采用铜模吸铸法制备Nd56Fe30Al10Dy4大块非晶合金,利用差示扫描量热仪(DSC)、振动样品磁强计(VSM)、X射线衍射仪(XRD)和扫描电镜(SEM)研究了该合金晶化过程中磁性及微观结构的变化。结果表明,铸态下合金表现为明显的硬磁性,在765 K退火后,合金中有少量晶态相产生,内禀矫顽力和饱和磁化强度略有下降。随着退火温度升高,合金中晶态相的相对含量逐渐增加,非晶相的相对含量逐渐减少,饱和磁化强度逐渐降低,但其内禀矫顽力变化不大。810 K退火后,合金完全晶化,铁磁性消失。结合合金的磁性能、微观结构、铁磁交换耦合作用的结果分析,Nd基大块非晶合金的矫顽力来源于合金中非晶相,但非晶相的相对含量却对矫顽力影响不大,这可以用强钉扎机制进行解释。  相似文献   

17.
采用电场烧结法制备出纳米复相Nd10.5Dy0.5Fe76.9Nb1Co586.1永磁块体,研究了电场烧结温度对其磁性能和抗压强度的影响,采用XRD,SEM等方法分别对其相结构、显微组织进行了分析。结果表明:非晶合金压制成型后,经823K,300S电场烧结制得的纳米晶永磁块体具有最佳磁性能:Br=0.6498T,Hcj=714kA/m,(BH)max=63kJ/m^3。随着烧结温度的升高,块体的抗压强度增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号