首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this work, we extend the multiscale cohesive zone model (MCZM) (Zeng and Li in Comput Methods Appl Mech Eng 199:547–556, 2010), in which interatomic potential is embedded into constitutive relation to express cohesive law in fracture process zone, to include the hierarchical Cauchy–Born rule in the process zone and to simulate three dimensional fracture in silicon thin films. The model has been applied to simulate fracture stress and fracture toughness of single-crystal silicon thin film by using the Tersoff potential. In this study, a new approach has been developed to capture inhomogeneous deformation inside the cohesive zone. For this purpose, we introduce higher order Cauchy–Born rules to construct constitutive relations for corresponding higher order process zone elements, and we introduce a sigmoidal function supported bubble mode in finite element shape function of those higher order cohesive zone elements to capture the nonlinear inhomogeneous deformation inside the cohesive zone elements. Benchmark tests with simple 3D models have confirmed that the present method can predict the fracture toughness of silicon thin films. Interestingly, this is accomplished without increasing of computational cost, because the present model does not require quadratic elements to represent heterogeneous deformation, which is the inherent weakness of the previous MCZM model. Quantitative comparisons with experimental results are performed by computing crack propagation in non-notched and initially notched silicon thin films, and it is found that our model can reproduce essential material properties, such as Young’s modulus, fracture stress, and fracture toughness of single-crystal silicon thin films.  相似文献   

2.
Numerical investigations are conducted to simulate high-speed crack propagation in pre-strained PMMA plates. In the simulations, the dynamic material separation is explicitly modeled by cohesive elements incorporating an initially rigid, linear-decaying cohesive law. Initial attempts using a rate-independent cohesive law failed to reproduce available experimental results as numerical crack velocities consistently overestimate experimental observations. As proof of concept, a phenomenological rate-dependent cohesive law, which bases itself on the physics of microcracking, is introduced to modulate the cohesive law with the macroscopic crack velocity. We then generalize this phenomenological approach by establishing a rate-dependent cohesive law, which relates the traction to the effective displacement and rate of change of effective displacement. It is shown that this new model produces numerical results in good agreement with experimental data. The analysis demonstrates that the simulation of high-speed crack propagation in brittle structures necessitates the use of rate-dependent cohesive models, which account for the complicated rate-process of dynamic fracture at the propagating crack tip.  相似文献   

3.
The dynamic fracture of functionally graded materials (FGMs) is modeled using an explicit cohesive volumetric finite element scheme that incorporates spatially varying constitutive and failure properties. The cohesive element response is described by a rate-independent bilinear cohesive failure model between the cohesive traction acting along the cohesive zone and the associated crack opening displacement. A detailed convergence analysis is conducted to quantify the effect of the material gradient on the ability of the numerical scheme to capture elastodynamic wave propagation. To validate the numerical scheme, we simulate dynamic fracture experiments performed on model FGM compact tension specimens made of a polyester resin with varying amounts of plasticizer. The cohesive finite element scheme is then used in a parametric study of mode I dynamic failure of a Ti/TiB FGM, with special emphasis on the effect of the material gradient on the initiation, propagation and arrest of the crack.  相似文献   

4.
Progressive damage and failure in composites are generally complex and involve multiple interacting failure modes. Depending on factors such as lay-up sequence, loading and specimen configurations, failure may be dominated by extensive matrix crack-delamination interactions, which are very difficult to model accurately. The present study further develops an integrated extended finite element method (XFEM) and cohesive element (CE) method for three-dimensional (3D) delamination migration in multi-directional composite laminates, and validates the results with experiment performed on a double-cantilever beam (DCB). The plies are modeled by using XFEM brick elements, while the interfaces are modeled using CEs. The interaction between matrix crack and delamination is achieved by enriching the nodes of cohesive element. The mechanisms of matrix fracture and delamination migration are explained and discussed. Matrix crack initiation and propagation can be predicted and delamination migration is also observed in the results. The algorithm provides for the prediction of matrix crack angles through the ply thickness. The proposed method provides a platform for the realistic simulation of progressive failure of composite laminates.  相似文献   

5.
6.
This paper proposes a level set model for simulating delamination propagation in composites under high-cycle fatigue loading. For quasi-static loading conditions, interface elements with a cohesive law are widely used for the simulation of delamination. However, basic concepts from fatigue analysis such as the notion that the crack growth rate is a function of energy release rate cannot be embedded in existing cohesive laws. Therefore, we propose a model in which the cohesive zone is eliminated from the computation while maintaining the flexibility that the crack shape is not bound to element edges. The model is able to predict the delamination growth rate and its front shape accurately. To demonstrate the validity of the model, several tests under different fracture modes are conducted and the results are compared with experimental data, analytical solutions and results from cohesive zone analysis.  相似文献   

7.
The composite materials are nowadays widely used in aeronautical domain. These materials are subjected to different types of loading that can damage a part of the structure. This diminishes the resistance of the structure to failure. In this paper, matrix cracking and delamination propagation in composite laminates are simulated as a part of damage. Two different computational strategies are developed: (i) a cohesive model (CM) based on the classical continuum mechanics and (ii) a continuous damage material model (CDM) coupling failure modes and damage. Another mixed methodology (MM) is proposed using the continuous damage model for delamination initiation and the cohesive model for 3D crack propagation and mesh openings. A good agreement was obtained when compared simple characterization tests and corresponding simulations.  相似文献   

8.
9.
Based on embedded atom method (EAM), an embedded atom hyperelastic (EAH) constitutive model is developed. The proposed EAH constitutive model provides a multiscale formalism to determine mesoscale or macroscale material behavior by atomistic information. By combining the EAH with cohesive zone model (CZM), a multiscale embedded atom cohesive finite element model (EA-cohesive FEM) is developed for simulating failure of materials at mesoscale and macroscale, e.g. fracture and crack propagation etc. Based on EAH, the EA-cohesive FEM applies the Cauchy-Born rule to calculate mesoscale or macroscale material response for bulk elements. Within the cohesive zone, a generalized Cauchy-Born rule is applied to find the effective normal and tangential traction-separation cohesive laws of EAH material. Since the EAM is a realistic semi-empirical interatomic potential formalism, the EAH constitutive model and the EA-cohesive FEM are physically meaningful when it is compared with experimental data. The proposed EA-cohesive FEM is validated by comparing the simulation results with the results of large scale molecular dynamics simulation. Simulation result of dynamic crack propagation is presented to demonstrate the capacity of EA-cohesive FEM in capturing the dynamic fracture.  相似文献   

10.
Numerical Analysis of Stiffener Runout Sections   总被引:2,自引:0,他引:2  
The recent trend of incorporating more composite material in primary aircraft structures has highlighted the vulnerability of stiffened aerostructures to through-thickness stresses, which may lead to delamination and debonding at the skin–stiffener interface, leading to collapse. Stiffener runout regions are particularly susceptible to this problem and cannot be avoided due to the necessity to terminate stiffeners at rib intersections or at cutouts, interrupting the stiffener load path. In this paper, experimental tests relating to two different stiffener runout specimens are presented and the failure modes of both specimens are discussed in detail. A thinner-skinned specimen showed sudden and unstable crack propagation, while a thicker-skinned specimen showed initially unstable but subsequent stable crack growth. Detailed finite element models of the two specimens are developed, and it is shown how such models can explain and predict the behaviour and failure mode of stiffener runouts. The models contain continuum shell elements to model the skin and stiffener, while cohesive elements using a traction-separation law are placed at the skin–stiffener interface to effectively model the debonding which promotes structural failure.  相似文献   

11.
12.
Four low-carbon microalloyed pipeline steel plates were studied with two chemical compositions and different thermo-mechanical treatments, leading to either ferritic–pearlitic or ferritic–bainitic microstructures.Microstructural and mechanical properties were investigated. An original dynamic tensile experiment is used to study crack propagation in full-thickness wide plates under either quasi-static and dynamic conditions. In the latter case, crack speeds up to 20–40 m s−1 were reached and led to ductile shear crack propagation as observed in pipe bursts, while mode I in-plane crack propagation was observed in most quasi-static tests. Shear mode fracture results from strain localization under dynamic conditions and may be detrimental to steel toughness. Steel resistance to crack propagation is evaluated with the use of the energy dissipation rate parameter. The effect of the microstructure as well as material parameters like the anisotropic behavior on fracture toughness were evaluated. It is shown that ferritic–bainitic steels exhibit a better yield stress–toughness compromise than ferritic–pearlitic ones.In a companion paper (Engng. Fract. Mech., submitted for publication), the numerical simulation of crack propagation in wide plates using fully coupled local approach to fracture is presented.  相似文献   

13.
The aim of the paper is the development, assessment and use of suitable numerical procedures for the analysis of the crack evolution in cohesive materials. In particular, homogeneous as well as heterogeneous materials, obtained by embedding short stiff fibres in a cohesive matrix, are considered. Two‐dimensional Mode I fracture problems are investigated. The cohesive constitutive law is adopted to model the process zone occurring at the crack tip. An elasto‐plastic constitutive relationship, able to take into account the processes of fibre debonding and pull‐out, is introduced to model the mechanical response of the short fibres. Two numerical procedures, based on the stress and on the energy approach, are developed to investigate the crack propagation in cohesive as well as fibre‐reinforced materials, characterized by a periodic crack distribution. The results obtained using the stress and energy approaches are compared in order to evaluate the effectiveness of the procedures. Investigations on the size effect for microcracked periodic cohesive materials, and on the beneficial effects of the fibres in improving the composite material response, are developed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Thermal barrier coatings (TBC) are widely used to prevent transient high temperature attack and allow components high durability. Due to strong inhomogeneous material properties the TBC failure often initiates near the interface between the brittle oxide layer and the ductile substrate. A reliable prediction of the TBC failure requires detailed information about the crack tip field and the consequent fracture criteria. In the present paper both cohesive model and gradient plasticity are used to simulate the failure process and to study interdependence of the interface stress distribution with the specific fracture energies. Computations confirm that combination of the two models is able to simulate different failure mechanisms in the TBC system. The computational model has the potential to give a realistic prediction of the crack propagation process.  相似文献   

15.
The objective of this work was to establish Mode II fracture parameters for cohesive elements that can be further utilized to evaluate Mode II interfacial fracture strength of polyurea/AISI 4340 steel composite structures. To obtain the fracture parameters, end notched flexure (ENF) tests were conducted to validate proposed finite element models. The fracture behavior observed from the tests was highly nonlinear and large plastic deformations were involved during crack formation and propagation. A strain incompatibility model was introduced to describe the nonlinearity prior to fracture. This nonlinear and plastic behavior made Linear Elastic Fracture Mechanics (LEFM) approaches not applicable to approximate the fracture parameters. As a result of these experimental observations, finite element analyses of the ENF tests were performed to develop the necessary fracture parameters for cohesive elements selected to replicate the failure modes. Good agreement between the selected numerical models and experimental data was observed.  相似文献   

16.
The objective of this study is to model the laminated composite as a multilayered plate each layer being made of a different material. With a crack in the mid-layer of the laminate, the stresses can vary in all three space coordinate directions and the problem is recognized as a three-dimensional one. A laminate plate theory is developed by application of the minimum complementary energy theorem in variational calculus such that the qualitative three-dimensional character of the crack edge stresses is retained while approximations are made in a quantitative sense on the stress intensity factor.Numerical values of the stress intensity factors for different construction of the laminate are reported and compared with the same size plate made of a single homogeneous material. When the modulus of elasticity of the middle layer which contains the crack is lower than that of the outer layers, the load transmission to the crack site as measured by the stress intensity factor can be reduced significantly. The present model assumes failure by crack propagation in only one layer of the laminate. Other possible modes of failure such as cohesive and/or adhesive fracture in laminated structures have yet to be explored.  相似文献   

17.
In this work, modeling of brittle failure of the interface for a linear elastic material is presented. The idea is to integrate a novel extrinsic cohesive zone model into the incomplete interior penalty Galerkin variant of the discontinuous Galerkin (DG) method. As a result, the initial stiffness in the prefailure regime is omitted without having to remesh the crack path during the crack propagation. The interface model is used in combination with different discretization techniques, including matching and nonmatching meshes. This is possible due to the DG method's weak continuity constraint. Moreover, the locking problem in the bulk is cured by the application of a reduced Gaussian integration scheme on the boundary terms. The performance of the new cohesive discontinuous Galerkin elements with different integration schemes is compared with one of the standard intrinsic cohesive models. Due to the elimination of locking, crack initiation at the interface can be realistically displayed.  相似文献   

18.
Since wood products for structural elements, especially cross‐laminated timber (CLT), have gained importance in the building sector, the need for appropriate and reliable design codes for such wood products has become essential. For the improvement and development of design concepts, a profound knowledge about the mechanical behaviour of these products is necessary. For this reason, this work focuses on global failure mechanisms and the corresponding evolution of different crack modes in CLT plates, depending on geometric and/or material related properties. Therefore, plate‐bending experiments on three‐ and five‐layered CLT plates were carried out. In addition to standard evaluation methods, each specimen was cut into small cubes to identify the failure modes inside the plates. Regions with dominant shear failure, tensile failure, delamination and mixed failure modes could be captured and connected to geometry and loading situation. Based on this evaluation, well‐known but not yet in detail described effects, such as the ductile structural behaviour of CLT plates, can be explained. Moreover, the evolution of rolling shear failure modes as well as from which point the progressive failure highly affects the plate stiffness is investigated and analysed in detail.  相似文献   

19.
Dynamic crack propagation in a unidirectional carbon/epoxy composite is studied through finite element analyses of asymmetric impact (shear loading) of a rod against a rectangular plate. A finite deformation anisotropic visco-plastic model is used to describe the constitutive response of the composite. Crack propagation is simulated by embedding zero thickness interface element along the crack path. An irreversible mixed-mode cohesive law is used to describe the evolution of interface tractions as a function of displacement jumps. Contact and friction behind the crack tip are accounted for in the simulations. The failure of the first interface element at the pre-notch tip models onset of crack extension. Crack propagation is modeled through consecutive failure of interface elements. The dynamic crack propagation phenomenon is studied in terms of crack initiation time, crack speed, mode I and mode II displacement jumps and tractions associated with the failure of interface elements, effective plastic strain at the crack tip and path independent integral J. Analyses are carried out at impact velocities of 5, 10, 20, 30 and 40 m/s, assuming the crack wake is frictionless. Moreover, analyses at impact velocities of 30 and 40 m/s are also carried out with a friction coefficient of 0.5, 1, 5 and 10 along the crack surfaces. The analyses show that steady-state intersonic crack propagation in fiber reinforced composite materials occurs when the impact velocity exceeds a given threshold. A steady-state crack speed of 3.9 times the shear wave speed and 83% of the longitudinal wave speed is predicted in the cases in which the impact velocity is above 10 m/s. Detailed discussion is given on the features of sub-sonic and intersonic crack propagation. It is shown that friction effects, behind the crack tip, do not have a significant effect on maximum crack speed; however, they do on characteristics of the shock wave trailing the crack tip. The analyses also show that the contour integral J, computed at contours near the crack tip, is indeed path independent and can serve as a parameter for characterizing intersonic crack propagation.  相似文献   

20.
This article presents a three dimensional constitutive model for anisotropic damage to describe the elastic-brittle behavior of unidirectional fibrereinforced laminated composites. The primary objective of the article focuses on the three dimensional relationship between damage of the material and the effective elastic properties for the purpose of stress analysis of composite structures, in extension to the two dimensional model in Matzenmiller, Lubliner and Taylor (1995). A homogenized continuum is adopted for the constitutive theory of anisotropic damage and elasticity. Damage initiation criteria are based on Puck failure criterion for first ply failure and progressive micro crack propagation is based on the idea of continuum damage evolution. Internal variables are introduced to describe the evolution of the damage state under loading and as a subsequence the degradation of the material stiffness. Emphasis is placed on a suitable coupling among the equations for the rates of the damage variables with respect to the different damage modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号