首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the mixed boundary integral equation method is developed to study the elastic interactions of a fatigue crack and a micro-defect such as a void, a rigid inclusion or a transformation inclusion. The method of pseudo-tractions is employed to study the effect of a transformation inclusion. An enriched element which incorporates the mixed-mode stress intensity factors is applied to characterize the singularity at a moving crack tip. In order to evaluate the accuracy of the numerical procedure, the analysis of a crack emanating from a circular hole in a finite plate is performed and the results are compared with the available numerical solution. The effects of various micro-defects on the crack path and fatigue life are investigated. The results agree with the experimental observations.  相似文献   

2.
By using the displacement discontinuity method with crack-tip elements (a boundary element method) proposed recently by the author, this note presents the stress intensity factors (SIFs) of a rectangular tensile plate with single edge crack. Further this note studies the SIFs of crack emanating from an edge half-circular hole. By comparing the calculated SIFs of the single edge half-circular-hole crack with those of the single edge crack, a shielding effect of the half-circular hole on the SIFs of the single edge crack is discussed. It is found that the boundary element method is simple, yet accurate for calculating the SIFs of complex crack problems in finite plate.  相似文献   

3.
To understand the different aspects of fatigue behaviour of complex structural joints it will be much helpful if the effects of different parameters are studied separately. In this article, to study the isolated effect of interference fit on fatigue life a pined hole specimen is investigated. This specimen is a single‐holed plate with an oversized pin which force fitted to the hole. The investigation was carried out both experimentally and numerically. In the experimental part, interference fitted specimens along with open hole specimens were fatigue tested to study the experimental effect of the interference fit. In the numerical part, three‐dimensional finite element (FE) simulations have been performed in order to obtain the created stresses due to interference fit and subsequent applied longitudinal load at the holed plate. The stress distribution obtained from FE simulation around the hole was used to predict crack initiation life using Smith–Watson–Topper method and fatigue crack growth life using the NASGRO equation with applying the AFGROW computer code. The predicted fatigue life obtained from the numerical methods show a good agreement with the experimental fatigue life.  相似文献   

4.
This paper presents stress intensity factor solutions for several crack configurations in plates. The loadings considered include internal pressure, and also combined bending and tension. The dual boundary element method is used to model the plate and mixed mode stress intensity factors are evaluated by a crack surface displacement extrapolation technique and the J-integral technique. Several cases including centre crack, edge crack and cracks emanating from a hole in finite width plates are presented.  相似文献   

5.
Cold expansion process is a well-known technique for improving the fatigue life of aerospace structures by introducing a compressive residual stress around the fastener holes. However, there are concerns about the residual stress distribution around those holes which are located near the free edges of structure. The purpose of this study is to investigate the influence of edge distance ratio (e/D) on the residual stress distribution around a cold expanded hole in Al 2024 alloy. A two-dimensional finite element simulation was carried out with various degrees of cold expansion and various values of e/D. It was found that for edge distance ratios less than e/D = 3, there are considerable effects on the residual stress profile. Also, the dependency of residual stress distribution on the degree of expansion was reduced significantly for small e/Ds. The results revealed that the bulging of the plate free edge increases with reduction of e/D but in worse cases the maximum bulging at the plate free edge was lower than 3% of the hole radius. The weight function method was then used for determining stress intensity factors for a crack emanating from a cold expanded hole.  相似文献   

6.
Cracks emanating from a circular hole are of significant engineering importance, especially in aerospace industry. Accurate determination of key fracture mechanics parameters is essential for damage tolerance design and fatigue life predictions. The purpose of this paper is to provide an efficient and accurate closed‐form weight function approach to the calculation of crack surface displacements for radial crack(s) emanating from a circular hole in an infinite and finite‐width plate. Results were presented for two loading conditions: remote applied stress and uniform stress segment applied to crack surfaces, and extensively compared to recent studies using other methods in the literature. Both single and double radial cracks were considered, and also the effect of finite plate width on crack surface displacements has been investigated. A brief assessment was made on an engineering estimation of displacements based on a correction of stress intensity factor ratio. It has been demonstrated that the Wu‐Carlsson closed‐form weight functions are very efficient, accurate and easy‐to‐use for calculating crack surface displacements for arbitrary load conditions. The method will facilitate fatigue crack closure and other fracture mechanics analyses where accurate crack surface displacements are required.  相似文献   

7.
In the present paper, the residual strength of a pin-loaded lug and a finite plate, both with a semi-elliptical crack emanating from a hole, is examined. A new analytical methodology, based on Fracture Mechanics concepts, is proposed to analyse the crack propagation process in terms of life estimation and crack front evolution. Firstly, the stress field and the stress intensity factor are computed by applying both analytical and numerical approaches. Then, the two-parameter driving force model proposed by Kujawski is implemented for the fatigue life estimation and the crack front evolution. The validity of model here employed is assessed through the comparison between crack growth calculations and experimental data available in the literature, such comparison shows a quite good correlation for the crack and geometrical configurations here examined.  相似文献   

8.
Three‐dimensional numerical analyses, using the finite element method (FEM), have been adopted to simulate fatigue crack propagation in a hollow cylindrical specimen, under pure axial or combined axial‐torsion loading conditions. Specimens, made of Al alloys B95AT and D16T, have been experimentally tested under pure axial load and combined in‐phase constant amplitude axial and torsional loadings. The stress intensity factors (SIFs) have been calculated, according to the J‐integral approach, along the front of a part through crack, initiated in correspondence of the outer surface of a hollow cylindrical specimen. The crack path is evaluated by using the maximum energy release rate (MERR) criterion, whereas the Paris law is used to calculate crack growth rates. A numerical and experimental comparison of the results is presented, showing a good agreement in terms of crack growth rates and paths.  相似文献   

9.
Mixed-mode stable tearing crack growth events in Arcan plate specimens made of aluminum alloy 2024-T3 are simulated using three-dimensional (3D) finite element methods. A modeling/simulation procedure utilizing a mixed-mode CTOD fracture criterion and the custom 3D crack growth simulation software, CRACK3D, with an automatic local re-meshing option is demonstrated. Simulation predictions of the load-crack extension curve and the in-plane curvilinear crack growth path are compared with experimental measurements for various mixed-mode loading cases. Issues such as the effects of near-tip finite element size and crack extension increment size on simulation predictions are investigated.  相似文献   

10.
通过计算裂纹尖端应力强度因子及疲劳裂纹扩展速率da/d N,由C.Paris模型推导出安全寿命Nf,由Bathias公式计算"哑铃"状钛合金试样的裂纹扩展寿命。通过理论计算和有限元分析超声疲劳"哑铃"状试样,得出应力最大位置。利用有限元仿真和实验数据分析TC4钛合金疲劳寿命。在20 k Hz的超声疲劳试验中,试样的断口位置表明:TC4钛合金材料内部缺陷是试样萌生裂纹使断裂位置偏离最大应力处的主要原因。并得出疲劳裂纹萌生阶段寿命决定"哑铃"状试样的疲劳寿命。  相似文献   

11.
Cold working is one method used to enhance the fatigue life of holes in aerospace structures. The method introduces a compressive stress field in the material around the hole and this reduces the tendency for fatigue cracks to initiate and grow under superimposed cyclic mechanical load. To include the benefit of cold working in design the stress intensity factors must be evaluated for cracks growing from the hole edge. Two-dimensional (2D) finite element analyses have been carried out to quantify the residual stresses surrounding the cold worked hole. These residual stresses have been used in a finite element calculation of the effective stress intensity factor for cracks emanating from the hole edge normal to the loading direction. The results of the 2D analysis have been compared with those derived using a weight function method. The weight function results have been shown always to underestimate the stress intensity factor. A three-dimensional (3D) FEA has been carried out using the same technique for stress intensity factor evaluation to investigate the effect of through thickness variation of residual stress. Stress intensity factors calculated with the 3D analysis are generally higher than those calculated using the 2D analysis.  相似文献   

12.
A weight function approach is proposed to calculate the stress intensity factor and crack opening displacement for cracks emanating from a circular hole in an infinite sheet subjected to mixed modes load. The weight function for a pure mode II hole‐edge crack is given in this paper. The stress intensity factors for a mixed modes hole‐edge crack are obtained by using the present mode II weight function and existing mode I Green (weight) function for a hole‐edge crack. Without complex derivation, the weight functions for a single hole‐edge crack and a centre crack in infinite sheets are used to study 2 unequal‐length hole‐edge cracks. The stress intensity factor and crack opening displacement obtained from the present weight function method are compared well with available results from literature and finite element analysis. Compared with the alternative methods, the present weight function approach is simple, accurate, efficient, and versatile in calculating the stress intensity factor and crack opening displacement.  相似文献   

13.
Study of slant fracture in ductile materials   总被引:1,自引:1,他引:0  
Slant fracture is widely observed during crack growth in thin sheet specimens made of ductile materials, providing a good case for investigating three-dimensional criteria for mixed-mode ductile fracture. To gain an understanding of slant fracture events and to provide insight for establishing a slant fracture criterion, stable tearing fracture experiments on combined tension-torsion (nominal mixed-mode I/III) specimens and nominal Mode I Arcan specimens made of Al 2024-T3 are analyzed using the finite element method under three-dimensional conditions. Two types of finite element models are considered for the study of slant fracture: (a) combined tension-torsion specimens containing stationary, flat and slant cracks subject to loads corresponding to the onset of crack growth, and (b) stable tearing crack growth with slanting in a nominal Mode I Arcan specimen. Analysis results reveal that there exists a strong correlation between certain features of the crack-front effective plastic strain field and the orientation of the slant fracture surface. In particular, it is observed that (a) at the onset of crack growth in the combined tension-torsion experiments, the angular position of the maximum effective plastic strain around the crack front serves as a good indicator for the slant fracture surface orientation during subsequent crack growth; and (b) during stable tearing crack growth in the Mode I Arcan specimen, which experiences a flat-to-slant fracture surface transition, the crack growth path on each section plane through the thickness of the specimen coincides with the angular position of the maximum effective plastic strain around the crack front.  相似文献   

14.
To investigate the effect of bolt clamping force, resulting from torque tightening, on the mixed mode fracture (I and II) strength and effective geometry/loading factor of an edge crack with different lengths, experimental and numerical studies have been carried out. In the experimental part fracture tests were conducted on three batches of simple edge crack and bolt torque tightened with 3.5 and 7 N m edge crack at three different crack sizes of Poly methyl-methacrylate (PMMA) rectangular plate. The specimens’ fracture strength was obtained using a tensile test machine at different loading angles by employing a modified Arcan fixture. In numerical part, finite element simulations were employed to model the three test specimen batches at the three crack lengths to obtain their stress intensity geometry/loading factors. The results show that the bolt tightening torque significantly reduces the effective geometry/loading factor, and thus increases the joint fracture strength compared to bolt-less simple edge crack specimens. However, the bolt clamping effect on increasing the fracture strength was almost the same for different crack lengths.  相似文献   

15.
The effect of interference-fit on fretting fatigue crack initiation and ΔK was studied numerically for available experimental results in a single pinned plate in Al-alloy 7075-T6. The role of interference ratio was investigated alongside friction coefficient through finite element. Cyclic stress distributions in the plate ligament and fretting stresses on the contact interface were evaluated using 3-D elastic–plastic finite element models. Additionally a 3-D elastic finite element model was utilized to discuss ΔK of cracks emanating from interference fitted holes. Results demonstrate that fretting was the main reason for crack nucleation, and furthermore, the location was precisely predicted and fatigue life enhancement was explained.  相似文献   

16.
In the present paper, fatigue tensile tests are carried out on a servo-hydraulic fatigue testing machine to study the whole propagation process of the inclined crack. And the scanning electron microscope is employed to observe the micromorphology of the fracture surface to further probe the crack growth rate from a microscopic point of view. Meanwhile, the finite element method has also been applied to predict the crack propagation trajectory and the fatigue life of the sample with two finite element analysis codes. The fatigue tensile tests indicate the inclined crack propagates along the direction perpendicular to the external loading and the crack growth rate increases continuously based on the micromorphology of the fracture surface. The numerical analysis results reveal the variation of the stress distribution at the crack tip as well as the crack trajectory at different extension steps. Moreover, the stress intensity factor values are discussed in detail. And the computed results, the inclined crack propagation path and fatigue life of the sample, agree well with the experimental ones, which provide certain referential significance for the prediction of the inclined crack propagation in thin plate.  相似文献   

17.
Periodic collinear edge hole cracks and arbitrary small cracks emanating from collinear holes, which are two typical multiple site damages occurred in the aircraft structures, are studied by using the weigh function method. An explicit closed form weight function for periodic edge hole cracks in an infinite sheet is obtained and further used to calculate the stress intensity factor and crack opening displacement for various loading cases. Compared to finite element method, the present weight function is accurate and highly efficient. The interactions of the holes and cracks on the stress intensity factor and crack opening displacement are quantitatively determined by using the present weight function. An approximate weight function method is also proposed for arbitrary small cracks emanating from multiple collinear holes. This method is very useful for calculating the stress intensity factor for arbitrary small cracks.  相似文献   

18.
The boundary element method is employed to obtain T-stress solutions for cracks emanating from a circular hole in finite rectangular plates. Numerical values of the T-stress are obtained using the M-contour integral approach. A range of crack lengths are analyzed for two hole sizes, and the cases of a single crack and double-cracks emanating from the hole in the plate under both uniform remote tension and simple bending are considered. For completeness, stress intensity factor solutions are also presented. These results will be useful for failure assessments using two-parameter linear elastic fracture mechanics.  相似文献   

19.
This note concerns with stress intensity factors of cracks emanating from a square hole in rectangular plate under biaxial loads by means of the boundary element method which consists of the non-singular displacement discontinuity element presented by Crouch and Starfied and the crack tip displacement discontinuity elements proposed by the author. In the boundary element implementation the left or the right crack tip displacement discontinuity element is placed locally at corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundary. The present numerical results illustrate that the present approach is very effective and accurate for calculating stress intensity factors of complicated cracks in a finite plate and can reveal the effect of the biaxial load and the cracked body geometry on stress intensity factors.  相似文献   

20.
有限板共线多孔MSD疲劳裂纹扩展有限元模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了二维断裂分析有限元软件FRANC2D/L在疲劳裂纹扩展模拟方面的基本步骤.利用该软件对有限板中心孔边对称裂纹的疲劳裂纹扩展进行模拟计算,对比模拟结果和试验数据,发现两者吻合良好,证明了利用该方法模拟疲劳裂纹扩展的可靠性.将FRANC2D/L应用到有限板共线多孔MSD疲劳裂纹扩展的有限元模拟上,得到了各孔边裂纹的长度和疲劳扩展寿命之间的关系曲线.模拟计算结果表明,在相同条件下,有限板中心孔边对称裂纹的裂纹扩展寿命要远远高于MSD结构中中心孔边裂纹的疲劳扩展寿命;由于MSD结构中影响各孔边裂纹的因素有所差异,各条裂纹的疲劳扩展寿命也会有所不同.另外,还给出了不含主裂纹的MSD和含主裂纹的MSD两种情况下的疲劳裂纹扩展历程,通过比较得知,含主裂纹的MSD结构更容易发生裂纹的合并和贯穿致使结构发生破坏.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号