首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Sandcastle worms have developed protein‐based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the adhesive delivery is the formation of a fluidic complex coacervate phase. After delivery, the adhesive transforms into a solid upon an external trigger. In this work, a fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) chains and starts out as a fluid complex coacervate that can be injected at room temperature. Upon increasing the temperature above the lower critical solution temperature of PNIPAM, the complex coacervate transitions into a nonflowing hydrogel while preserving its volume—the water content in the material stays constant. The adhesive functions in the presence of water and bonds to different surfaces regardless of their charge. This type of adhesive avoids many of the problems of current underwater adhesives and may be useful to bond biological tissues.  相似文献   

5.
6.
Abstract

This article reviews the properties and characterization of an intelligent thermoresponsive surface, which is a key technology for cell sheet-based tissue engineering. Intelligent thermoresponsive surfaces grafted with poly(N-isopropylacrylamide) exhibit hydrophilic/hydrophobic alteration in response to temperature change. Cultured cells are harvested on thermoresponsive cell culture dishes by decreasing the temperature without the use of digestive enzymes or chelating agents. Our group has developed cell sheet-based tissue engineering for therapeutic uses with single layer or multilayered cell sheets, which were recovered from the thermoresponsive cell culture dish. Using surface derivation techniques, we developed a new generation of thermoresponsive cell culture dishes to improve culture conditions. We also designed a new methodology for constructing well-defined organs using microfabrication techniques.  相似文献   

7.
Interconversion between extended and bent structures at the pendant groups of a chiral polyene framework [poly(phenylacetylene) with (R)‐(2‐methoxy‐2‐phenylacetyl)glycine residues linked to 4‐vinylanilines] allows the reversible colorimetric transformation from stretched to compressed helical cis‐transoid polyenic structures through manipulation of the flexible spacer. This transformation generates either organogels (stretched helical form) or nanoparticles (compressed helical form) under the control of polar/low polar stimuli respectively and opens the way to the development of new sensors and stimuli‐sensitive materials based on these concepts.  相似文献   

8.
The controlled fabrication of gradient materials is becoming increasingly important as the next generation of tissue engineering seeks to produce inhomogeneous constructs with physiological complexity. Current strategies for fabricating gradient materials can require highly specialized materials or equipment and cannot be generally applied to the wide range of systems used for tissue engineering. Here, the fundamental physical principle of buoyancy is exploited as a generalized approach for generating materials bearing well‐defined compositional, mechanical, or biochemical gradients. Gradient formation is demonstrated across a range of different materials (e.g., polymers and hydrogels) and cargos (e.g., liposomes, nanoparticles, extracellular vesicles, macromolecules, and small molecules). As well as providing versatility, this buoyancy‐driven gradient approach also offers speed (<1 min) and simplicity (a single injection) using standard laboratory apparatus. Moreover, this technique is readily applied to a major target in complex tissue engineering: the osteochondral interface. A bone morphogenetic protein 2 gradient, presented across a gelatin methacryloyl hydrogel laden with human mesenchymal stem cells, is used to locally stimulate osteogenesis and mineralization in order to produce integrated osteochondral tissue constructs. The versatility and accessibility of this fabrication platform should ensure widespread applicability and provide opportunities to generate other gradient materials or interfacial tissues.  相似文献   

9.
Emulation of biological synapses is necessary for future brain‐inspired neuromorphic computational systems that could look beyond the standard von Neuman architecture. Here, artificial synapses based on ionic‐electronic hybrid oxide‐based transistors on rigid and flexible substrates are demonstrated. The flexible transistors reported here depict a high field‐effect mobility of ≈9 cm2 V?1 s?1 with good mechanical performance. Comprehensive learning abilities/synaptic rules like paired‐pulse facilitation, excitatory and inhibitory postsynaptic currents, spike‐time‐dependent plasticity, consolidation, superlinear amplification, and dynamic logic are successfully established depicting concurrent processing and memory functionalities with spatiotemporal correlation. The results present a fully solution processable approach to fabricate artificial synapses for next‐generation transparent neural circuits.  相似文献   

10.
All‐polymer solar cells (all‐PSCs) have attracted immense attention in recent years due to their advantages of tunable absorption spectra and electronic energy levels for both donor and acceptor polymers, as well as their superior thermal and mechanical stability. The exploration of the novel n‐type conjugated polymers (CPs), especially based on aromatic diimide (ADI), plays a vital role in the further improvement of power conversion efficiency (PCE) of all‐PSCs. Here, recent progress in structure modification of ADIs including naphthalene diimide (NDI), perylene diimide (PDI), and corresponding derivatives is reviewed, and the structure–property relationships of ADI‐based CPs are revealed.  相似文献   

11.
Osteoconduction and non‐toxic bioresorbability can be achieved by combining Bioglass® particles and Poly (3‐hydroxybutyrate) (P3HB) fibre meshes in novel composites for tissue engineering scaffolds. Bioglass® coatings readily induce hydroxyapatite (HA) formation on fibre surfaces in vitro, while biodegradable P3HB yields non toxic degradation products. In the present investigation, P3HB meshes were used, which were generated by means of an embroidery technology on the basis of yarns with 12 and 24 filaments with diameters of ~ 30 μm. Bioglass® particles of average particle size < 5 μm were used to produce coatings on P3HB meshes by slurry dipping. By varying the concentration of Bioglass® particles in aqueous slurry, coating thickness and homogeneity could be controlled. Optimally coated meshes were incubated in simulated body fluid (SBF) for 3, 7, 14, and 21 days to detect formation of HA, as a qualitative assessment of bioactivity. Scanning electron microscopy (SEM) observations coupled with X‐ray diffraction analyses revealed the presence of HA crystals on mesh surfaces following 3 days of incubation in SBF. The amount of HA crystals was shown to increase with incubation time in SBF. Minimal polymer degradation was seen after 21 days in SBF, suggesting a suitable time frame for tissue replacement. The novel Bioglass® /P3HB composite meshes developed here are potential materials for bone tissue engineering scaffold applications.  相似文献   

12.
聚乳酸组织工程支架在SBF溶液中的降解和矿化性能   总被引:1,自引:0,他引:1  
本文利用扫描电镜、X射线衍射仪以及红外漫反射仪,并通过对聚乳酸组织工程支架在模拟体液(SBF)中的失重率、分子量以及模拟体液pH值变化的测试,系统地研究了聚乳酸组织工程支架在模拟体液中的降解和矿化性能。结果发现:在模拟体液中,随着时间的增长,聚乳酸组织工程支架的分子量不断下降;但是其重量并不随着时间的增长而减小,而是有升有降。X-射线衍射图谱和FTIR漫反射图谱研究表明,在模拟体液中,聚乳酸组织工程支架的表面有磷灰石沉积物出现。  相似文献   

13.
14.
15.
Ammonia‐scavenging transmembrane pH‐gradient poly(styrene)‐b‐poly(ethylene oxide) polymersomes are investigated for the oral treatment and diagnosis of hyperammonemia, a condition associated with serious neurologic complications in patients with liver disease as well as in infants with urea cycle disorders. While these polymersomes are highly stable in simulated intestinal fluids at extreme bile salt and osmolality conditions, they unexpectedly do not reduce plasmatic ammonia levels in cirrhotic rats after oral dosing. Incubation in dietary fiber hydrogels mimicking the colonic environment suggests that the vesicles are probably destabilized during the dehydration of the intestinal chyme. The findings question the relevance of commonly used simulated intestinal fluids for studying vesicular stability. With the encapsulation of a pH‐sensitive dye in the polymersome core, the local pH increase upon ammonia influx could be exploited to assess the ammonia concentration in the plasma of healthy and cirrhotic rats as well as in other fluids. Due to its high sensitivity and selectivity, this polymersome‐based assay could prove useful in the monitoring of hyperammonemic patients and in other applications such as drug screening tests.  相似文献   

16.
17.
18.
19.
The considerable advances that have been made in the development of organotypic cultures have failed to overcome the challenges of expressing tissue‐specific functions and complexities, especially for organs that require multitasking and complex biological processes, such as the liver. Primary liver cells are ideal biological building blocks for functional organotypic reconstruction, but are limited by their rapid loss of physiological integrity in vitro. Here the concept of lattice growth used in material science is applied to develop a tissue incubator, which provides physiological cues and controls the 3D assembly of primary cells. The cues include a biological growing template, spatial coculture, biomimetic radial flow, and circulation in a scaffold‐free condition. The feasibility of recapitulating a multiscale physiological structural hierarchy, complex drug clearance, and zonal physiology from the cell to tissue level in long‐term cultured liver‐on‐a‐chip is demonstrated. These methods are promising for future applications in pharmacodynamics and personal medicine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号