首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective nanoprobes and contrast agents are urgently sought for early‐stage cancer diagnosis. Upconversion nanoparticles (UCNPs) are considerable alternatives for bioimaging, cancer diagnosis, and therapy. Yb3+/Tm3+ co‐doping brings both emission and excitation wavelengths into the near‐infrared (NIR) region, which is known as “optical transmission window” and ideally suitable for bioimaging. Here, NIR emission intensity is remarkably enhanced by 113 times with the increase of Yb3+ concentration from 20% to 98% in polyethylene glycol (PEG) modified NaYF4:Yb3+/Tm3+ UCNPs. PEG‐UCNPs‐5 (98% Yb3+) can act as excellent nanoprobes and contrast agents for trimodal upconversion (UC) optical/CT/T2‐weighted magnetic resonance imaging (MRI). In addition, the enhanced detection of lung in vivo long‐lasting tracking, as well as possible clearance mechanism and excretion routes of PEG‐UCNPs‐5 have been demonstrated. More significantly, a small tumor down to 4 mm is detected in vivo via intravenous injection of these nanoprobes under both UC optical and T2‐weighted MRI modalities. PEG‐UCNPs‐5 can emerge as bioprobes for multi‐modal bioimaging, disease diagnosis, and therapy, especially the early‐stage tumor diagnosis.  相似文献   

2.
Gadolinium (Gd) doped upconversion nanoparticles (UCNPs) have been well documented as T1‐MR and fluorescent imaging agents. However, the performance of Gd3+ ions located differently in the crystal lattice still remains debatable. Here, a well‐designed model was built based on a seed‐mediated growth technique to systematically probe the longitudinal relaxivity of Gd3+ ions within the crystal lattice and at the surface of UCNPs. We found, for the first time, a nearly 100% loss of relaxivity of Gd3+ ions buried deeply within crystal lattices (> 4 nm), which we named a “negative lattice shielding effect” (n‐LSE) as compared to the “positive lattice shielding effect” (p‐LSE) for the enhanced upconversion fluorescent intensity. As‐observed n‐LSE was further found to be shell thickness dependent. By suppressing the n‐LSE as far as possible, we optimized the UCNPs' structure design and achieved the highest r1 value (6.18 mM?1s?1 per Gd3+ ion) among previously reported counterparts. The potential bimodal imaging application both in vitro and in vivo of as‐designed nano‐probes was also demonstrated. This study clears the debate over the role of bulk and surface Gd3+ ions in MRI contrast imaging and paves the way for modulation of other Gd‐doped nanostructures for highly efficient T1‐MR and upconversion fluorescent bimodal imaging.  相似文献   

3.
Although upconversion nanoparticles (UCNPs) have drawn increasing attention for their unique photophysical characteristics, they suffer from a bottleneck of low luminescence efficiency due to the poor absorption coefficient of Ln3+. Dye sensitization has provided thousands‐fold enhancement of upconversion luminescence (UCL) in organic solvents because of the remarkably improved light absorption ability, but the sensitization of UCL in aqueous phase is only less than 20 folds by far, with unknown restrictive factors. Herein, the aggregation‐caused quenching (ACQ) of dyes is revealed as the most important reason limiting dye sensitization in aqueous phase, and the problem is circumvented through delicately modulating the physical properties of dyes and their assembly manner with UCNPs. By further alleviating energy back transfer (EBT) from Ln3+ to dyes, more than 600‐fold enhancement of UCL is achieved in aqueous phase. The as‐obtained dyes modified UCNPs show good biocompatibility and high signal contrast when applied for deep in vivo imaging.  相似文献   

4.
Paramagnetic gadolinium (Gd‐III)‐ion‐doped upconversion nanoparticles (UCNPs) are attractive optical‐magnetic molecule imaging probes and are a highly promising nanoplatform for future theranostic nanomedicine design. However, the related relaxivity mechanism of this contrast agent is still not well understood and no significant breakthrough in relaxivity enhancement has been achieved. Here, the origin and optimization of both the longitudinal (r1) and transverse (r2) relaxivities are investigated using models of water soluble core@shell structured Gd3+‐doped UCNPs. The longitudinal relaxivity enhancement of the nanoprobe is demonstrated to be co‐contributed by inner‐and outer‐sphere mechanisms for ligand‐free probes, and mainly by outer‐sphere mechanism for silica‐shielded probes. The origin of the transverse relaxivity is inferred to be mainly from an outer‐sphere mechanism regardless of surface‐coating, but with the r2 values highly related to the surface‐state. Key factors that influence the observed relaxivities and r2/r1 ratios are investigated in detail and found to be dependent on the thickness of the NaGdF4 interlayer and the related surface modifications. A two orders of magnitude (105‐fold) enhancement in r1 relaxivity and 18‐fold smaller r2/r1 ratio compared to the first reported values are achieved, providing a new perspective for magnetic resonance (MR) sensitivity optimization and multimodality biological imaging using Gd3+‐doped UCNPs.  相似文献   

5.
Size‐dependent Raman spectra of the hexagonal (β)‐phase Yb3+,Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence (UCL) are reported. Raman scattering results show the normal red shifts of Raman peaks but anomalous line narrowing with decreasing the particle sizes. The phonon confinement effects are believed to be dominated by the surface vibrational energies in affecting UCL. Dynamic decay data are then applied to quantitatively verify the surface effects and size‐dependent UCL. Dynamic probing is shown to be an efficient tool to both qualitatively and quantitatively characterize the upconversion nanophorphors (UCNPs) that have no “quantum efficiency.” The findings are relevant to the engineering of the nanostructures of the UCNPs for the applications of the bioimaging and photodynamic therapy.  相似文献   

6.
Photodynamic therapy (PDT) is a noninvasive and site‐specific therapeutic technique for the clinical treatment of various of superficial diseases. In order to tuning the operation wavelength and improve the tissue penetration of PDT, rare‐earth doped upconversion nanoparticles (UCNPs) with strong anti‐stokes emission are introduced in PDT recently. However, the conventional Yb3+‐sensitized UCNPs are excited at 980 nm which is overlapped with the absorption of water, thus resulting in strong overheating effect. Herein, a convenient but effective design to obtain highly emissive 795 nm excited Nd3+‐sensitized UCNPs (NaYF4:Yb,Er@NaYF4:Yb0.1Nd0.4@NaYF4) is reported, which provides about six times enhanced upconversion luminescence, comparing with traditional UCNPs (NaYF4:Yb,Er@NaYF4). A colloidal stable and non‐leaking PDT nanoplatform is fabricated later through a highly PEGylated mesoporous silica layer with covalently linked photosensitizer (Rose Bengal derivative). With as‐prepared Nd3+‐sensitized UCNPs, the nanoplatform can produce singlet oxygen more effective than traditional UCNPs. Significant higher penetration depth and lower overheating are demonstrated as well. All these features make as‐prepared nanocomposites excellent platform for PDT treatment. In addition, the nanoplatform with uniform size, high surface area, and excellent colloidal stability can be extended for other biomedical applications, such as imaging probes, biosensors, and drug delivery vehicles.  相似文献   

7.
A strategy is demonstrated for simultaneous phase/size manipulation, multicolor tuning, and remarkably enhanced upconversion luminescence (UCL), particularly in red emission bands in fixed formulae of general lanthanide‐doped upconverting nanoparticles (UCNPs), namely NaLnF4:Yb/Er (Ln: Lu, Gd, Yb), simply through transition metal Mn2+‐doping. The addition of different Mn2+ dopant contents in NaLnF4:Yb/Er system favors the crystal structure changing from hexagonal (β) phase to cubic (α) phase, and the crystal size of UCNPs can be effectively controlled. Moreover, the UCL can be tuned from green through yellow and to dominant red emissions under the excitation of 980 nm laser. Interestingly, a large enhancement in overall UCL spectra of Mn2+ doped UCNPs (~59.1 times for NaLuF4 host, ~39.3 times for NaYbF4 host compared to the UCNPs without Mn2+ doping) is observed, mainly due to remarkably enhanced luminescence in the red band. The obtained result greatly benefits in vitro and in vivo upconversion bioimaging with highly sensitive and deeper tissue penetration. To prove the application, a select sample of nanocrystal is used as an optical probe for in vitro cell and in vivo bioimaging to verify the merits of high contrast, deeper tissue penetration, and the absence of autofluorescence. Furthermore, the blood vessel of lung of a nude mouse with the injection of Mn2+‐doped NaLuF4: Yb/Er UCNPs can be readily visualized using X‐ray imaging. Therefore, the Mn2+ doping method provides a new strategy for phase/size control, multicolor tuning, and remarkable enhancement of UCL dominated by red emission, which will impact on the field of bioimaging based on UCNP nanoprobes.  相似文献   

8.
TiO2/NaYF4:Yb3+,Er3+ nano‐heterostructures are prepared in situ on the TiO2 photoanode of dye‐sensitized solar cells (DSCs). Transmission electron microscopy (TEM) and high‐resolution (HR)‐TEM confirm the formation of TiO2/NaYF4:Yb3+,Er3+ nano‐heterostructures. The up‐converted fluorescence spectrum of the photoanode containing the nano‐heterostructure confirms electron injection from NaYF4:Yb3+,Er3+ to the condution band (CB) of TiO2. When using a photoanode containing the nano‐heterostructure in a DSC, the overall efficiency (η) of the device is 17% higher than that of a device without the up‐conversion nanoparticles (UCNPs) and 13% higher than that of a device containing mixed TiO2 and UCNPs. Nano‐heterostructures of TiO2/NaYF4:Yb3+,Tm3+ and TiO2/NaYF4:Yb3+,Ho3+ can also be prepared in situ on TiO2 photoanodes. The overall efficiency of the device containing TiO2/NaYF4:Yb3+,Ho3+ nano‐heterostructures is 15% higher than the control device without UCNPs. When nano‐heterostructures of TiO2/NaYF4:Yb3+,Tm3+ are used, the open‐circuit voltage (Voc) and the short‐circuit current density (Jsc) are all slightly decreased. The effect of the different UCNPs results from the different energy levels of Er3+, Tm3+, and Ho3+. These results demonstrate that utilizing the UCNPs with the apporpriate energy levels can lead to effective electron injection from the UCNPs to the CB of TiO2, effectively improving the photocurrent and overall efficiency of DSCs while using NIR light.  相似文献   

9.
A novel OA/ionic liquid two‐phase system combining the merits of thermal decomposition method, the IL‐based strategy, and the two‐phase approach is introduced to synthesize high‐quality lanthanide‐doped NaGdF4 upconversion nanocrystals with different crystal‐phases in OA‐phase and IL‐phase through a one‐step controllable reaction. Oil‐dispersible cubic‐phase NaGdF4:Yb, Er (Ho, Tm) nanocrystals with ultra‐small size (~5 nm) and monodispersity are obtained in the OA phase of the two‐phase system via an IL‐based reaction. More importantly, water‐soluble hexagonal‐phase NaGdF4:Yb, Er nanocrystals are obtained in the same system simply by adopting an extremely facile method to complete the dual phase‐transition (crystal‐phase transition and OA‐phase to IL‐phase transition) simultaneously. The synthesized lanthanide‐doped NaGdF4 upconversion nanocrystals are effective for dual‐mode UCL imaging and CT imaging in vivo.  相似文献   

10.
The insufficient blood flow and oxygen supply in solid tumor cause hypoxia, which leads to low sensitivity of tumorous cells and thus causing poor treatment outcome. Here, mesoporous manganese dioxide (mMnO2) with ultrasensitive biodegradability in a tumor microenvironment (TME) is grown on upconversion photodynamic nanoparticles for not only TME‐enhanced bioimaging and drug release, but also for relieving tumor hypoxia, thereby markedly improving photodynamic therapy (PDT). In this nanoplatform, mesoporous silica coated upconversion nanoparticles (UCNPs@mSiO2) with covalently loaded chlorin e6 are obtained as near‐infrared light mediated PDT agents, and then a mMnO2 shell is grown via a facile ultrasonic way. Because of its unique mesoporous structure, the obtained nanoplatform postmodified with polyethylene glycol can load the chemotherapeutic drug of doxorubicin (DOX). When used for antitumor application, the mMnO2 degrades rapidly within the TME, releasing Mn2+ ions, which couple with trimodal (upconversion luminescence, computed tomography (CT), and magnetic resonance imaging) imaging of UCNPs to perform a self‐enhanced imaging. Significantly, the degradation of mMnO2 shell brings an efficient DOX release, and relieve tumor hypoxia by simultaneously inducing decomposition of tumor endogenous H2O2 and reduction of glutathione, thus achieving a highly potent chemo‐photodynamic therapy.  相似文献   

11.
The NIR light‐induced imaging‐guided cancer therapy is a promising route in the targeting cancer therapy field. However, up to now, the existing single‐modality light‐induced imaging effects are not enough to meet the higher diagnosis requirement. Thus, the multifunctional cancer therapy platform with multimode light‐induced imaging effects is highly desirable. In this work, captopril stabilized‐Au nanoclusters Au25(Capt)18?(Au25) are assembled into the mesoporous silica shell coating outside of Nd3+‐sensitized upconversion nanoparticles (UCNPs) for the first time. The newly formed Au25 shell exhibits considerable photothermal effects, bringing about the photothermal imaging and photoacoustic imaging properties, which couple with the upconversion luminescence imaging. More importantly, the three light‐induced imaging effects can be simultaneously achieved by exciting with a single NIR light (808 nm), which is also the triggering factor for the photothermal and photodynamic cancer therapy. Besides, the nanoparticles can also present the magnetic resonance and computer tomography imaging effects due to the Gd3+ and Yb3+ ions in the UCNPs. Furthermore, due to the photodynamic and the photothermal effects, the nanoparticles possess efficient in vivo tumor growth inhibition under the single irradiation of 808 nm light. The multifunctional cancer therapy platform with multimode imaging effects realizes a true sense of light‐induced imaging‐guided cancer therapy.  相似文献   

12.
Conventional photodynamic therapy (PDT) has limited applications in clinical cancer therapy due to the insufficient O2 supply, inefficient reactive oxygen species (ROS) generation, and low penetration depth of light. In this work, a multifunctional nanoplatform, upconversion nanoparticles (UCNPs)@TiO2@MnO2 core/shell/sheet nanocomposites (UTMs), is designed and constructed to overcome these drawbacks by generating O2 in situ, amplifying the content of singlet oxygen (1O2) and hydroxyl radical (?OH) via water‐splitting, and utilizing 980 nm near‐infrared (NIR) light to increase penetration depth. Once UTMs are accumulated at tumor site, intracellular H2O2 is catalyzed by MnO2 nanosheets to generate O2 for improving oxygen‐dependent PDT. Simultaneously, with the decomposition of MnO2 nanosheets and 980 nm NIR irradiation, UCNPs can efficiently convert NIR to ultraviolet light to activate TiO2 and generate toxic ROS for deep tumor therapy. In addition, UCNPs and decomposed Mn2+ can be used for further upconversion luminescence and magnetic resonance imaging in tumor site. Both in vitro and in vivo experiments demonstrate that this nanoplatform can significantly improve PDT efficiency with tumor imaging capability, which will find great potential in the fight against tumor.  相似文献   

13.
A novel, efficient, cost‐effective, and high‐level security performance anticounterfeit device achieved by plasmonic‐enhanced upconversion luminescence (UCL) is demonstrated. The plasmonic architecture consists of the randomly dispersed Ag nanowires (AgNWs) network, upconversion nanoparticles (UCNPs) monolayer, and metal film, in which the UCL is enhanced by a few tens, compared to reference sample, becuase the plasmonic modes lead to the concentration of the incident near infrared (NIR) light in the UCNPs monolayer. In the configuration, both the localized surface plasmons (LSPs) around the metallic nanostructures and gap plasmon polaritons (GPPs) confined in the UCNPs monolayer, significantly contribute to the UCL enhancement. The UCL enhancement mechanism resulting from enhanced NIR absorption, boosted internal quantum process, and formation of strong plasmonic hot spots in the plasmonic architecture is analyzed theoretically and numerically. More interestingly, a proof‐of‐concept anticounterfeit device using the plasmonic‐enhanced UCL is proposed, through which a nonreusable and high‐level cost‐effective security device protecting the genuine products is realized.  相似文献   

14.
Lanthanide‐doped upconversion nanoparticles (UCNPs) have significant applications for single‐molecule probes and high‐resolution display. However, one of their major hurdles is the weak luminescence, and this remains a grand challenge to achieve at the single‐particle level. Here, 484‐fold luminescence enhancement in LuF3:Yb3+, Er3+ rhombic flake UCNPs is achieved, thanks to the Yb3+‐mediated local photothermal effect, and their original morphology, size, and good dispersibility are well preserved. These data show that the surface atomic structure of UCNPs as well as transfer from amorphous to ordered crystal structure is modulated by making use of the local photothermal conversion that is generated by the directional absorption of 980 nm light by Yb3+ ions. The confocal luminescence images obtained by super‐resolution stimulated emission depletion also show the great enhancement of individual LuF3:Yb3+, Er3+ nanoparticles; the high signal‐to‐noise ratio images indicate that the laser treatment technology opens the door for single particle imaging and practical application.  相似文献   

15.
Photon upconversion multiplexing has attracted increasing interest in recent years; however, realizing the red color–based multicolor‐tunable output in upconversion nanoparticles (UCNPs) at a fixed composition remains a huge challenge. Here, a novel and versatile approach to fine‐control upconversion luminescence (UCL) colors from UCNPs through selectively confining specific excitation energy by the photon blocking effect is reported. Four types of dual‐color switchable UCNPs capable of emitting red‐blue and red‐green emissions are successfully designed following this strategy, and their UCL performance shows a multiwavelength (808/980/1550 nm) excitable feature that is well sustained in a wide range of excitation power density. The use of the photon blocking effect further enables the dynamically switchable red‐green‐blue UCL with 808/980 nm excitations. These findings provide a general method to achieve multicolor‐tunable UCL at a single nanoparticle level. Moreover, the UCNPs with red‐based multicolor emissions in this work enriches the upconversion system and should have potential applications in display, anti‐counterfeiting, and bioimaging.  相似文献   

16.
Multifunctional nanocarriers based on the up‐conversion luminescent nanoparticles of NaYF4:Yb3+/Er3+ core (UCNPs) and thermo/pH‐coupling sensitive polymer poly[(N‐isopropylacrylamide)‐co‐(methacrylic acid)] (P(NIPAm‐co‐MAA)) gated mesoporous silica shell are reported for cancer theranostics, including fluorescence imaging, and for controlled drug release for therapy. The as‐synthesized hybrid nanospheres UCNPs@mSiO2‐P(NIPAm‐co‐MAA) show bright green up‐conversion fluorescence under 980 nm laser excitation and the thermo/pH‐sensitive polymer is active as a “valve” to moderate the diffusion of the embedded drugs in‐and‐out of the pore channels of the silica container. The anticancer drug doxorubicin hydrochloride (DOX) can be absorbed into UCNPs@mSiO2‐P(NIPAm‐co‐MAA) nanospheres and the composite drug delivery system (DDS) shows a low level of leakage at low temperature/high pH values but significantly enhanced release at higher temperature/lower pH values, exhibiting an apparent thermo/pH controlled “on‐off” drug release pattern. The as‐prepared UCNPs@mSiO2‐P(NIPAm‐co‐MAA) hybrid nanospheres can be used as bioimaging agents and biomonitors to track the extent of drug release. The reported multifunctional nanocarriers represent a novel and versatile class of platform for simultaneous imaging and stimuli‐responsive controlled drug delivery.  相似文献   

17.
Photodynamic therapy (PDT) based on upconversion nanoparticles (UCNPs) can effectively destroy cancer cells under tissue‐penetrating near‐infrared light (NIR) light. Herein, we synthesize manganese (Mn2+)‐doped UCNPs with strong red light emission at ca. 660 nm under 980 nm NIR excitation to activate Chlorin e6 (Ce6), producing singlet oxygen (1O2) to kill cancer cells. A layer‐by‐layer (LbL) self‐assembly strategy is employed to load multiple layers of Ce6 conjugated polymers onto UCNPs via electrostatic interactions. UCNPs with two layers of Ce6 loading (UCNP@2xCe6) are found to be optimal in terms of Ce6 loading and 1O2 generation. By further coating UCNP@2xCe6 with an outer layer of charge‐reversible polymer containing dimethylmaleic acid (DMMA) groups and polyethylene glycol (PEG) chains, we obtain a UCNP@2xCe6‐DMMA‐PEG nanocomplex, the surface of which is negatively charged and PEG coated under pH 7.4; this could be converted to have a positively charged naked surface at pH 6.8, significantly enhancing cell internalization of nanoparticles and increasing in vitro NIR‐induced PDT efficacy. We then utilize the intrinsic optical and paramagnetic properties of Mn2+‐doped UCNPs for in vivo dual modal imaging, and uncover an enhanced retention of UCNP@2xCe6‐DMMA‐PEG inside the tumor after intratumoral injection, owing to the slightly acidic tumor microenvironment. Consequently, a significantly improved in vivo PDT therapeutic effect is achieved using our charge‐reversible UCNP@2xCe6‐DMMA‐PEG nanoparticles. Finally, we further demonstrate the remarkably enhanced tumor‐homing of these pH‐responsive charge‐switchable nanoparticles in comparison to a control counterpart without pH sensitivity after systemic intravenous injection. Our results suggest that UCNPs with finely designed surface coatings could serve as smart pH‐responsive PDT agents promising in cancer theranostics.  相似文献   

18.
In this work, a simple method is demonstrated for the synthesis of multifunctional core–shell nanoparticles NaYF4:Yb,Er@NaYF4:Yb@NaNdF4:Yb@NaYF4:Yb@PAA (labeled as Er@Y@Nd@Y@PAA or UCNP@PAA), which contain a highly effective 808‐nm‐to‐visible UCNP core and a thin shell of poly(acrylic acid) (PAA) to achieve upconversion bioimaging and pH‐sensitive anticancer chemotherapy simultaneously. The core–shell Nd3+‐sensitized UCNPs are optimized by varying the shell number, core size, and host lattices. The final optimized Er@Y@Nd@Y nanoparticle composition shows a significantly improved upconversion luminescence intensity, that is, 12.8 times higher than Er@Y@Nd nanoparticles. After coating the nanocomposites with a thin layer of PAA, the resulting UCNP@PAA nanocomposite perform well as a pH‐responsive nanocarrier and show clear advantages over UCNP@mSiO2, which are evidenced by in vitro/in vivo experiments. Histological analysis also reveals that no pathological changes or inflammatory responses occur in the heart, lungs, kidneys, liver, and spleen. In summary, this study presents a major step forward towards a new therapeutic and diagnostic treatment of tumors by using 808‐nm excited UCNPs to replace the traditional 980‐nm excitation.  相似文献   

19.
The last decade has witnessed the remarkable research progress of lanthanide‐doped upconversion nanocrystals (UCNCs) at the forefront of promising applications. However, the future development and application of UCNCs are constrained greatly by their underlying shortcomings such as significant nonradiative processes, low quantum efficiency, and single emission colors. Here a hybrid plasmonic upconversion nanostructure consisting of a GNR@SiO2 coupled with NaGdF4:Yb3+,Nd3+@NaGdF4:Yb3+,Er3+@NaGdF4 core–shell–shell UCNCs is rationally designed and fabricated, which exhibits strongly enhanced UC fluorescence (up to 20 folds) and flexibly tunable UC colors. The experimental findings show that controlling the SiO2 spacer thickness enables readily manipulating the intensity ratio of the Er3+ red, green, and blue emissions, thereby allowing us to achieve the emission color tuning from pale yellow to green upon excitation at 808 nm. Electrodynamic simulations reveal that the tunable UC colors are due to the interplay of plasmon‐mediated simultaneous excitation and emission enhancements in the Er3+ green emission yet only excitation enhancement in the blue and red emissions. The results not only provide an upfront experimental design for constructing hybrid plasmonic UC nanostructures with high efficiency and color tunability, but also deepen the understanding of the interaction mechanism between the Er3+ emissions and plasmon resonances in such complex hybrid nanostructure.  相似文献   

20.
There is a growing interest in understanding how size‐dependent quantum confinement affects the photoluminescence efficiency, excited‐state dynamics, energy‐transfer and thermalization phenomena in nanophosphors. For lanthanide (Ln3+)‐doped nanocrystals, despite the localized 4f states, confinement effects are induced mostly via electron–phonon interactions. In particular, the anomalous thermalization reported so far for a handful of Ln3+‐doped nanocrystals has been rationalized by the absence of low‐frequency phonon modes. This nanoconfinement may further impact on the Ln3+ luminescence dynamics, such as phonon‐assisted energy transfer or upconversion processes. Here, intriguing and unprecedented anomalous thermalization in Gd2O3:Eu3+ and Gd2O3:Yb3+,Er3+ nanotubes, exhibiting up to one order of magnitude larger than previously reported for similar materials, is reported. This anomalous thermalization induces unexpected energy transfer from Eu3+ C2 to S6 crystallographic sites, at 11 K, and 2H11/24I15/2 Er3+ upconversion emission; it is interpreted on the basis of the discretization of the phonon density of states, easily tuned by varying the annealing temperature (923–1123 K) in the synthesis procedure, and/or the Ln3+ concentration (0.16–6.60%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号