首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naphthalenediimide (NDI)‐based polymers co‐polymerized with thienyl units are an interesting class of polymer semiconductors because of their good electron mobilities and unique film microstructure. Despite these properties, understanding how the extension of the thienyl co‐monomer affects charge transport properties remains unclear. With this goal in mind, we have synthesized a series of NDI derivatives of the parent poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene) (P(NDI2OD‐T2)), which exhibited excellent electron mobility. The strategy comprises both the extension of the donor o‐conjugation length and the heteroatomic fusion of the thiophene rings. These newly synthesized compounds are characterized experimentally and theoretically vis‐à‐vis with P(NDI2OD‐T2) as the reference. UV‐vis data and cyclic‐voltammetry are adopted to assess the effect of the donor modification on the frontier energy levels and on the bandgap. Intra‐molecular polaronic effects are accounted for by computing the internal reorganization energy with density functional theory (DFT) calculations. Finally electrons and holes transport is experimentally investigated in field‐effect transistors (FETs), by measuring current‐voltage characteristics at variable temperatures. Overall we have identified a regime where inter‐molecular effects, such as the wavefunction overlap and the degree of energetic disorder, induced by the different donor group prevail over polaronic effects and are the leading factors in determining electrons mobility.  相似文献   

2.
A synergetic effect of molecular weight (Mn) and fluorine (F) on the performance of all‐polymer solar cells (all‐PSCs) is comprehensively investigated by tuning the Mn of the acceptor polymer poly((N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl)‐alt‐5,5′‐(2,2′‐bithiophene)) (P(NDI2OD‐T2)) and the F content of donor polymer poly(2,3‐bis‐(3‐octyloxyphenyl)quinoxaline‐5,8‐dyl‐alt‐thiophene‐2,5‐diyl). Both Mn and F variations strongly influence the charge transport properties and morphology of the blend films, which have a significant impact on the photovoltaic performance of all‐PSCs. In particular, the effectiveness of high Mn in increasing power conversion efficiency (PCE) can be greatly improved by the devices based on optimum F content, reaching a PCE of 7.31% from the best all‐PSC combination. These findings enable us to further understand the working principles of all‐PSCs with a view on achieving even higher power conversion efficiency in the future.  相似文献   

3.
The controlling of molecular orientation and structural ordering of organic semiconductors is crucial to achieve high performance electronic devices. In this work, large‐area highly oriented and ordered films of an excellent electron transporter Poly{[N,N′‐bis(2‐octyldodecyl)‐1,4,5,8‐naphthalenedicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)) are achieved by improved solution‐cast in high magnetic field. Microstructural characterizations reveal that the chain backbones of P(NDI2OD‐T2) are highly aligned along the applied magnetic field in the films. Based on the synchrotron‐based X‐ray diffraction analysis of the polymer films cast from different solvents, a mechanism which controls the alignment process is proposed, which emphasizes that molecular aggregates of P(NDI2OD‐T2) preformed in the solution initiate magnetic alignment and finally determine the degree of film texture. Furthermore, the time‐modulated magnetic field technique is utilized to effectively control the orientation of π‐conjugated plane of the backbones, thus the degree of face‐on molecular packing of P(NDI2OD‐T2) is enhanced significantly. Thin film transistors based on the magnetic‐aligned P(NDI2OD‐T2) films exhibit an enhancement of electron mobility by a factor of four compared to the unaligned devices, as well as a large mobility anisotropy of seven.  相似文献   

4.
In this study, we investigate the influence of molecular geometry of the donor polymers and the perylene diimide dimers (di‐PDIs) on the bulk heterojunction (BHJ) morphology in the nonfullerene polymer solar cells (PSCs). The results reveal that the pseudo 2D conjugated poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)] (PTB7‐Th) has better miscibility with both bay‐linked di‐PDI (B‐di‐PDI) and hydrazine‐linked di‐PDI (H‐di‐PDI) compared to its 1D analog, poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7), to facilitate more efficient exciton dissociation in the BHJ films. However, the face‐on oriented π–π stacking of PTB7‐Th is severely disrupted by the B‐di‐PDI due to its more flexible structure. On the contrary, the face‐on oriented π–π stacking is only slightly disrupted by the H‐di‐PDI, which has a more rigid structure to provide suitable percolation pathways for charge transport. As a result, a very high power conversion efficiency (PCE) of 6.41% is achieved in the PTB7‐Th:H‐di‐PDI derived device. This study shows that it is critical to pair suitable polymer donor and di‐PDI‐based acceptor to obtain proper BHJ morphology for achieving high PCE in the nonfullerene PSCs.  相似文献   

5.
Sorting of semiconducting single‐walled carbon nanotubes (SWNTs) by conjugated polymers has attracted considerable attention recently because of its simplicity, high selectivity, and high yield. However, up to now, all the conjugated polymers used for SWNT sorting are electron‐donating (p‐type). Here, a high‐mobility electron‐accepting (n‐type) polymer poly([N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)) (P(NDI2OD‐T2)) is utilized for the sorting of high‐purity semiconducting SWNTs, as characterized by Raman spectroscopy, dielectric force spectroscopy and transistor measurements. In addition, the SWNTs sorted by P(NDI2OD‐T2) have larger diameters than poly(3‐dodecylthiophene) (P3DDT)‐sorted SWNTs. Molecular dynamics simulations in explicit toluene demonstrate distinct linear or helical wrapping geometry between P(NDI2OD‐T2) and different types of SWNTs, likely as a result of the strong interactions between the large aromatic core of the P(NDI2OD‐T2) backbone and the hexagon path of SWNTs. By using high‐mobility n‐type P(NDI2OD‐T2) as the sorting polymer, ambipolar SWNT transistors with better electron transport than that attained by P3DDT‐sorted SWNTs are achieved. As a result, flexible negated AND and negated OR logic circuits from the same set of ambipolar transistors are fabricated, without the need for doping. The use of n‐type polymers for sorting semiconducting SWNTs and achieving ambipolar SWNT transistor characteristics greatly simplifies the fabrication of flexible complementary metal‐oxide‐semiconductor‐like SWNT logic circuits.  相似文献   

6.
Thermoelectric generators pose a promising approach in renewable energies as they can convert waste heat into electricity. In order to build high efficiency devices, suitable thermoelectric materials, both n‐ and p‐type, are needed. Here, the n‐type high‐mobility polymer poly[N,N′‐bis(2‐octyldodecyl)naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene) (P(NDI2OD‐T2)) is focused upon. Via solution doping with 4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)‐N,N‐diphenylaniline (N‐DPBI), a maximum power factor of (1.84 ± 0.13) µW K?2 m?1 is achieved in an in‐plane geometry for 5 wt% dopant concentration. Additionally, UV–vis spectroscopy and grazing‐incidence wide‐angle X‐ray scattering are applied to elucidate the mechanisms of the doping process and to explain the discrepancy in thermoelectric performance depending on the charge carriers being either transported in‐plane or cross‐plane. Morphological changes are found such that the crystallites, built‐up by extended polymer chains interacting via lamellar and π–π stacking, re‐arrange from face‐ to edge‐on orientation upon doping. At high doping concentrations, dopant molecules disturb the crystallinity of the polymer, hindering charge transport and leading to a decreased power factor at high dopant concentrations. These observations explain why an intermediate doping concentration of N‐DPBI leads to an optimized thermoelectric performance of P(NDI2OD‐T2) in an in‐plane geometry as compared to the cross‐plane case.  相似文献   

7.
Ordering of semiconducting polymers in thin films from the nano to microscale is strongly correlated with charge transport properties as well as organic field‐effect transistor performance. This paper reports a method to control nano to microscale ordering of poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)) thin films by precisely regulating the solidification rate from the metastable state just before crystallization. The proposed simple but effective approach, kinetically controlled crystallization, achieves optimized P(NDI2OD‐T2) films with large polymer domains, long range ordered fibrillar structures, and molecular orientation preferable for electron transport leading to dramatic morphological changes in both polymer domain sizes at the micrometer scale and molecular packing structures at nanoscales. Structural changes significantly increase electron mobilities up to 3.43 ± 0.39 cm2 V?1 s?1 with high reliability, almost two orders of enhancement compared with devices from naturally dried films. Small contact resistance is also obtained for electron injection (0.13 MΩ cm), low activation energy (62.51 meV), and narrow density of states distribution for electron transport in optimized thin films. It is believed that this study offers important insight into the crystallization of conjugated polymers that can be broadly applied to optimize the morphology of semiconducting polymer films for solution processed organic electronic devices.  相似文献   

8.
Charge transport is investigated in high‐mobility n‐channel organic field‐effect transistors (OFETs) based on poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2), Polyera ActivInk? N2200) with variable‐temperature electrical measurements and charge‐modulation spectroscopy. Results indicate an unusually uniform energetic landscape of sites for charge‐carrier transport along the channel of the transistor as the main reason for the observed high‐electron mobility. Consistent with a lateral field‐independent transport at temperatures down to 10 K, the reorganization energy is proposed to play an important role in determining the activation energy for the mobility. Quantum chemical calculations, which show an efficient electronic coupling between adjacent units and a reorganization energy of a few hundred meV, are consistent with these findings.  相似文献   

9.
The effects of using a blocking dielectric layer and metal nanoparticles (NPs) as charge‐trapping sites on the characteristics of organic nano‐floating‐gate memory (NFGM) devices are investigated. High‐performance NFGM devices are fabricated using the n‐type polymer semiconductor, poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)), and various metal NPs. These NPs are embedded within bilayers of various polymer dielectrics (polystyrene (PS)/poly(4‐vinyl phenol) (PVP) and PS/poly(methyl methacrylate) (PMMA)). The P(NDI2OD‐T2) organic field‐effect transistor (OFET)‐based NFGM devices exhibit high electron mobilities (0.4–0.5 cm2 V?1 s?1) and reliable non‐volatile memory characteristics, which include a wide memory window (≈52 V), a high on/off‐current ratio (Ion/Ioff ≈ 105), and a long extrapolated retention time (>107 s), depending on the choice of the blocking dielectric (PVP or PMMA) and the metal (Au, Ag, Cu, or Al) NPs. The best memory characteristics are achieved in the ones fabricated using PMMA and Au or Ag NPs. The NFGM devices with PMMA and spatially well‐distributed Cu NPs show quasi‐permanent retention characteristics. An inkjet‐printed flexible P(NDI2OD‐T2) 256‐bit transistor memory array (16 × 16 transistors) with Au‐NPs on a polyethylene naphthalate substrate is also fabricated. These memory devices in array exhibit a high Ion/Ioff (≈104 ± 0.85), wide memory window (≈43.5 V ± 8.3 V), and a high degree of reliability.  相似文献   

10.
Exciton dissociation is a key step for the light energy conversion to electricity in organic photovoltaic (OPV) devices. Here, excitonic dissociation pathways in the high‐performance, low bandgap “in‐chain donor–acceptor” polymer PTB7 by transient optical absorption (TA) spectroscopy in solutions, neat films, and bulk heterojunction (BHJ) PTB7:PC71BM (phenyl‐C71‐butyric acid methyl ester) films are investigated. The dynamics and energetics of the exciton and intra‐/intermolecular charge separated states are characterized. A distinct, dynamic, spectral red‐shift of the polymer cation is observed in the BHJ films in TA spectra following electron transfer from the polymer to PC71BM, which can be attributed to the time evolution of the hole–electron spatial separation after exciton splitting. Effects of film morphology are also investigated and compared to those of conjugated homopolymers. The enhanced charge separation along the PTB7 alternating donor–acceptor backbone is understood by intramolecular charge separation through polarized, delocalized excitons that lower the exciton binding energy. Consequently, ultrafast charge separation and transport along these polymer backbones reduce carrier recombination in these largely amorphous films. This charge separation mechanism explains why higher degrees of PCBM intercalation within BHJ matrices enhances exciton splitting and charge transport, and thus increase OPV performance. This study proposes new guidelines for OPV materials development.  相似文献   

11.
Graphitic carbon nitride (g‐C3N4) has been commonly used as photocatalyst with promising applications in visible‐light photocatalytic water‐splitting. Rare studies are reported in applying g‐C3N4 in polymer solar cells. Here g‐C3N4 is applied in bulk heterojunction (BHJ) polymer solar cells (PSCs) for the first time by doping solution‐processable g‐C3N4 quantum dots (C3N4 QDs) in the active layer, leading to a dramatic efficiency enhancement. Upon C3N4 QDs doping, power conversion efficiencies (PCEs) of the inverted BHJ‐PSC devices based on different active layers including poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PC61BM), poly(4,8‐bis‐alkyloxybenzo(l,2‐b:4,5‐b′)dithiophene‐2,6‐diylalt‐(alkyl thieno(3,4‐b)thiophene‐2‐carboxylate)‐2,6‐diyl):[6,6]‐phenyl C71‐butyric acid methyl ester (PBDTTT‐C:PC71BM), and poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐co‐3‐fluorothieno [3,4‐b]thiophene‐2‐carboxylate] (PTB7‐Th):PC71BM reach 4.23%, 6.36%, and 9.18%, which are enhanced by ≈17.5%, 11.6%, and 11.8%, respectively, compared to that of the reference (undoped) devices. The PCE enhancement of the C3N4 QDs doped BHJ‐PSC device is found to be primarily attributed to the increase of short‐circuit current (Jsc), and this is confirmed by external quantum efficiency (EQE) measurements. The effects of C3N4 QDs on the surface morphology, optical absorption and photoluminescence (PL) properties of the active layer film as well as the charge transport property of the device are investigated, revealing that the efficiency enhancement of the BHJ‐PSC devices upon C3N4 QDs doping is due to the conjunct effects including the improved interfacial contact between the active layer and the hole transport layer due to the increase of the roughness of the active layer film, the facilitated photoinduced electron transfer from the conducting polymer donor to fullerene acceptor, the improved conductivity of the active layer, and the improved charge (hole and electron) transport.  相似文献   

12.
The morphology of the active layer of a bulk heterojunction solar cell, made of a blend of an electron‐donating polymer and an electron‐accepting fullerene derivative, is known to play a determining role in device performance. Here, a combination of molecular dynamics simulations and long‐range corrected density functional theory calculations is used to elucidate the molecular‐scale effects that even minor structural changes to the polymer backbone can have on the “local” morphology; this study focuses on the extent of polymer–fullerene mixing, on their packing, and on the characteristics of the fullerene–fullerene connecting network in the mixed regions, aspects that are difficult to access experimentally. Three representative polymer donors are investigated: (i) poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PffBT4T‐2OD); (ii) poly[(2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′″‐diyl)] (PBT4T‐2OD), where the fluorine atoms in the benzothiadiazole moieties of PffBT4T‐2OD are replaced with hydrogen atoms; and (iii) poly[(2,2′‐bithiophene)‐alt‐(4,7‐bis((2‐decyltetradecyl)thiophen‐2‐yl)‐5,6‐difluoro‐2‐propyl‐2H‐benzo[d][1,2,3]triazole)] (PT2‐FTAZ), where the sulfur atoms in the benzothiadiazole moieties of PffBT4T‐2OD are replaced with nitrogen atoms carrying a linear C3H7 side‐chain; these polymers are mixed with the phenyl‐C71‐butyric acid methyl ester (PC71BM) acceptor. This study also discusses the nature of the charge‐transfer electronic states appearing at the donor–acceptor interfaces, the electronic couplings relevant for the charge‐recombination process, and the electron‐transfer features between neighboring PC71BM molecules.  相似文献   

13.
Apparent recombination orders exceeding the value of two expected for bimolecular recombination have been reported for organic solar cells in various publications. Two prominent explanations are bimolecular losses with a carrier concentration dependent prefactor due to a trapping limited mobility and protection of trapped charge carriers from recombination by a donor–acceptor phase separation until re‐emission from these deep states. In order to clarify which mechanism is dominant temperature‐ and illumination‐dependent charge extraction measurements are performed under open circuit and short circuit conditions at poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61 butyric acid methyl ester (P3HT:PC61BM) and PTB7:PC71BM (poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]]) solar cells in combination with current–voltage characteristics. It is shown that the charge carrier density n dependence of the mobility μ and the recombination prefactor are different for P3HT:PC61BM at temperatures below 300 K and PTB7:PC71BM at room temperature. Therefore, in addition to μ(n), a detrapping limited recombination in systems with at least partial donor–acceptor phase separation is required to explain the high recombination orders.  相似文献   

14.
A bimodal texturing effect of semiconducting polymers is investigated by incorporating conjugated small molecules to significantly improve the charge transport characteristics via formation of 3D transport pathways. Solution blending of the electron‐transporting polymer, poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)), with small molecular crystals of tetrathiafulvalene and tetracyanoquinodimethane is used, and the thin film microstructures are studied using a combination of atomic force microscopy, transmission electron microscopy, 2D grazing incidence X‐ray diffraction, and surface‐sensitive near‐edge X‐ray absorption fine structure. Blended thin films show edge‐on and face‐on bimodal texture with long‐range order and microstructure packing orientation preferable for electron transport through the channel in organic field‐effect transistors, which is confirmed by high electron mobility 1.91 cm2 V?1 s?1, small contact resistance, and low energetic disorder according to temperature dependence of the field‐effect mobility. Structural changes suggest a 3D network charge transport model via lamella packing and bimodal orientation of the semiconducting polymers.  相似文献   

15.
Organic field‐effect transistors (OFETs) have attracted much attention for the next‐generation electronics. Despite of the rapid developments of OFETs, operational stability is a big challenge for their commercial applications. Moreover, the actual mechanism behind the degradation of electron transport is still poorly understood. Here, the electrical characteristics of poly{[N,N‐9‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,59‐(2,29‐bithiophene)} (P(NDI2OD‐T2)) thin‐film transistors (TFTs) as a function of semiconductor/dielectric interfacial property and environment are systematically investigated, in particular, how the copresence of water, oxygen, and active hydrogen on the surface of dielectric leads to a sharp drop‐off in threshold voltage. Evidence is found that an acid–base neutralization reaction occurring at the interface, as a combined effect of the chemical instability of dielectrics and the electrochemical instability of organic semiconductors, contributes to the significant electron trapping on the interface of P(NDI2OD‐T2) TFTs. Two strategies, increasing the intrinsic electrochemical stability of semiconductor and decreasing the chemical reactivity of gate dielectric, are demonstrated to effectively suppress the reaction and thus improve the operational stability of n‐type OFETs. The results provide an alternative degradation pathway to better understand the charge transport instability in n‐type OFETs, which is advantageous to construct high‐performance OFETs with long‐term stability.  相似文献   

16.
Two anthracene‐based star‐shaped conjugated small molecules, 5′,5″‐(9,10‐bis((4‐hexylphenyl)ethynyl)anthracene‐2,6‐diyl)bis(5‐hexyl‐2,2′‐bithiophene), HBantHBT, and 5′,5″‐(9,10‐bis(phenylethynyl)anthracene‐2,6‐diyl)bis(5‐hexyl‐2,2′‐bithiophene), BantHBT, are used as electron‐cascade donor materials by incorporating them into organic photovoltaic cells prepared using a poly((5,5‐E‐alpha‐((2‐thienyl)methylene)‐2‐thiopheneacetonitrile)‐alt‐2,6‐[(1,5‐didecyloxy)naphthalene])) (PBTADN):[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) blend. The small molecules penetrate the PBTADN:PC71BM blend layer to yield complementary absorption spectra through appropriate energy level alignment and optimal domain sizes for charge carrier transfer. A high short‐circuit current (JSC) and fill factor (FF) are obtained using solar cells prepared with the ternary blend. The highest photovoltaic performance of the PBTADN: BantHBT :PC71BM blend solar cells is characterized by a JSC of 11.0 mA cm?2, an open circuit voltage (VOC) of 0.91 V, a FF of 56.4%, and a power conversion efficiency (PCE) of 5.6% under AM1.5G illumination (with a high intensity of 100 mW?2). The effects of the small molecules on the ternary blend are investigated by comparison with the traditional poly(3‐hexylthiophene) (P3HT):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) system.  相似文献   

17.
A specific design for solution‐processed doping of active semiconducting materials would be a powerful strategy in order to improve device performance in flexible and/or printed electronics. Tetrabutylammonium fluoride and tetrabutylammonium hydroxide contain Lewis base anions, F? and OH?, respectively, which are considered as organic dopants for efficient and cost‐effective n‐doping processes both in n‐type organic and nanocarbon‐based semiconductors, such as poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)] (P(NDI2OD‐T2)) and selectively dispersed semiconducting single‐walled carbon nanotubes by π‐conjugated polymers. The dramatic enhancement of electron transport properties in field‐effect transistors is confirmed by the effective electron transfer from the dopants to the semiconductors as well as controllable onset and threshold voltages, convertible charge‐transport polarity, and simultaneously showing excellent device stabilities under ambient air and bias stress conditions. This simple solution‐processed chemical doping approach could facilitate the understanding of both intrinsic and extrinsic charge transport characteristics in organic semiconductors and nanocarbon‐based materials, and is thus widely applicable for developing high‐performance organic and printed electronics and optoelectronics devices.  相似文献   

18.
Improved charge generation via fast and effective hole transfer in all‐polymer solar cells (all‐PSCs) with large highest occupied molecular orbital (HOMO) energy offset (ΔEH) is revealed utilizing ultrafast transient absorption (TA) spectroscopy. Blending the same nonfullerene acceptor poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene) (N2200) with three different donor polymers produces all‐polymer blends with different ΔEH. The selective excitation of N2200 component in blends enables to uncover the hole transfer process from hole polaron‐induced bleaching and absorption signals probed at different wavelength. As the ΔEH is enhanced from 0.14 to 0.37 eV, the hole transfer rate rises more than one order and the hole transfer efficiency increases from 12.9% to 86.8%, in agreement with the trend of internal quantum efficiency in the infrared region where only N2200 has absorption. Additionally, Grazing‐incidence wide‐angle X‐ray scattering measurements indicate that face‐on crystal orientation in both polymer donor and acceptor also plays an important role in facilitating the charge generation via hole transfer in all‐PSCs. Hence, large ΔEH and proper crystal orientation should be considered in material design for efficient hole transfer in N2200‐based heterostructures. These results can provide valuable guidance for fabrication of all‐PSCs to further improve power conversion efficiency.  相似文献   

19.
Despite the rapid development of nonfullerene acceptors (NFAs), the fundamental understanding on the relationship between NFA molecular architecture, morphology, and device performance is still lacking. Herein, poly[[4,8‐bis[5‐(2‐ethylhexyl)thiophene‐2‐yl]benzo[1,2‐b:4,5‐b0]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]‐thieno[3,4‐b]thiophenediyl]] (PTB7‐Th) is used as the donor polymer to compare an NFA with a 3D architecture (SF‐PDI4) to a well‐studied NFA with a linear acceptor–donor–acceptor (A–D–A) architecture (ITIC). The data suggest that the NFA ITIC with a linear molecular structure shows a better device performance due to an increase in short‐circuit current ( Jsc) and fill factor (FF) compared to the 3D SF‐PDI4. The charge generation dynamics measured by femtosecond transient absorption spectroscopy (TAS) reveals that the exciton dissociation process in the PTB7‐Th:ITIC films is highly efficient. In addition, the PTB7‐Th:ITIC blend shows a higher electron mobility and lower energetic disorder compared to the PTB7‐Th:SF‐PDI4 blend, leading to higher values of Jsc and FF. The compositional sensitive resonant soft X‐ray scattering (R‐SoXS) results indicate that ITIC molecules form more pure domains with reduced domain spacing, resulting in more efficient charge transport compared with the SF‐PDI4 blend. It is proposed that both the molecular structure and the corresponding morphology of ITIC play a vital role for the good solar cell device performance.  相似文献   

20.
A fully conjugated para‐phenylene ladder polymer ( P1 ) and the alternating copolymers {2,7‐[9,9‐bis(2‐ethylhexyl)fluorene]‐5,5′‐(2,2′‐bithiophene)} ( P3 ) and {2,7‐[9,9‐dioctylfluorene]‐5,5′‐(2,2′‐bithiophene)} ( P4 ) have been prepared via metal‐mediated cross‐coupling reactions, using microwaves as a heat source. The procedure, which yields polymeric material in ca. ten minutes, has no adverse effects on the quality of the polymers and displays a high degree of reproducibility. Transfer of the optimized conditions to the synthesis of a new naphthalene‐based polyarylene‐ketone ( P2 ) and a (1,5‐dioctoxynaphthylene‐2,6‐diyl‐alt‐2,2′‐bithiophene‐5,5′‐diyl) copolymer ( P5 ) confirmed the versatility of the procedure and the dramatic reduction in reaction times compared with conventional heating. In the case of the Stille‐type coupling reaction of the electron‐rich, less reactive dibromo monomer 1,5‐dioctoxy‐2,6‐dibromo‐naphthalene, the microwave‐assisted protocol results in a marked increase in both yield and molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号