首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structures comprising high capacity active material are highly desirable in the development of advanced electrodes for energy storage devices. However, the structure degradation of such material still remains a challenge. The construction of amorphous and crystalline heterostructure appears to be a novel and effectual strategy to figure out the problem, owing to the distinct properties of the amorphous protective layer. Herein, crystalline‐Co3O4@amorphous‐TiO2 core–shell nanoarrays directly grown on the carbon cloth substrate are rationally designed to construct the free‐standing electrode. In the unique structure, the 3D porous nanoarrays provide increased availability of electrochemical active sites, and the array with a unique heterostructure of crystalline Co3O4 core and amorphous TiO2 shell exhibits intriguing synergistic properties. Besides, the amorphous TiO2 protective layer shows elastic behavior to mitigate the volume effect of Co3O4. Benefiting from these structural advantages, the as‐prepared free‐standing electrode exhibits superior lithium storage properties, including high coulombic efficiency, outstanding cyclic stability, and rate capability. Pouch cells with high flexibility are also fabricated and show remarkable electrochemical performances, holding great potential for flexible electronic devices in the future.  相似文献   

2.
The miniaturization of power sources aimed at integration into micro‐ and nano‐electronic devices is a big challenge. To ensure the future development of fully autonomous on‐board systems, electrodes based on self‐supported 3D nanostructured metal oxides have become increasingly important, and their impact is particularly significant when considering the miniaturization of energy storage systems. This review describes recent advances in the development of self‐supported 3D nanostructured metal oxides as electrodes for innovative power sources, particularly Li‐ion batteries and electrochemical supercapacitors. Current strategies for the design and morphology control of self‐supported electrodes fabricated using template, lithography, anodization and self‐organized solution techniques are outlined along with different efforts to improve the storage capacity, rate capability, and cyclability.  相似文献   

3.
4.
An alternative routine is presented by constructing a novel architecture, conductive metal/transition oxide (Co@Co3O4) core–shell three‐dimensional nano‐network (3DN) by surface oxidating Co 3DN in situ, for high‐performance electrochemical capacitors. It is found that the Co@Co3O4 core–shell 3DN consists of petal‐like nanosheets with thickness of <10 nm interconnected forming a 3D porous nanostructure, which preserves the original morphology of Co 3DN well. X‐ray photoelectron spectroscopy by polishing the specimen layer by layer reveals that the Co@Co3O4 nano‐network is core–shell‐like structure. In the application of electrochemical capacitors, the electrodes exhibit a high specific capacitance of 1049 F g?1 at scan rate of 2 mV/s with capacitance retention of ~52.05% (546 F g?1 at scan rate of 100 mV) and relative high areal mass density of 850 F g?1 at areal mass of 3.52 mg/cm2. It is believed that the good electrochemical behaviors mainly originate from its extremely high specific surface area and underneath core‐Co “conductive network”. The high specific surface area enables more electroactive sites for efficient Faradaic redox reactions and thus enhances ion and electron diffusion. The underneath core‐Co “conductive network” enables an ultrafast electron transport.  相似文献   

5.
Electrochemical energy storage (EES) devices have attracted immense research interests as an effective technology for utilizing renewable energy. 1D carbon‐based nanostructures are recognized as highly promising materials for EES application, combining the advantages of functional 1D nanostructures and carbon nanomaterials. Here, the recent advances of 1D carbon‐based nanomaterials for electrochemical storage devices are considered. First, the different categories of 1D carbon‐based nanocomposites, namely, 1D carbon‐embedded, carbon‐coated, carbon‐encapsulated, and carbon‐supported nanostructures, and the different synthesis methods are described. Next, the practical applications and optimization effects in electrochemical energy storage devices including Li‐ion batteries, Na‐ion batteries, Li–S batteries, and supercapacitors are presented. After that, the advanced in situ detection techniques that can be used to investigate the fundamental mechanisms and predict optimization of 1D carbon‐based nanocomposites are discussed. Finally, an outlook for the development trend of 1D carbon‐based nanocomposites for EES is provided.  相似文献   

6.
Nanostructured composites built from ordinary building units have attracted much attention because of their collective properties for critical applications. Herein, we have demonstrated the heteroassembly of carbon nanotubes and oxide nanocrystals using an aerosol spray method to prepare nanostructured mesoporous composites for electrochemical energy storage. The designed composite architectures show high conductivity and hierarchically structured mesopores, which achieve rapid electron and ion transport in electrodes. Therefore, as‐synthesized carbon nanotube/TiO2 electrodes exhibit high rate performance through rapid Li+ intercalation, making them suitable for ultrafast energy storage devices. Moreover, the synthesis process provides a broadly applicable method to achieve the heteroassembly of vast low‐dimensional building blocks for many important applications.  相似文献   

7.
A mild and environmental‐friendly method is developed for fabricating a 3D interconnected graphene electrode with large‐scale continuity. Such material has interlayer pores between reduced graphene oxide nanosheets and in‐plane pores. Hence, a specific surface area up to 835 m2 g−1 and a high powder conductivity up to 400 S m−1 are achieved. For electrochemical applications, the interlayer pores can serve as “ion‐buffering reservoirs” while in‐plane ones act as “channels” for shortening the mass cross‐plane diffusion length, reducing the ion response time, and prevent the interlayer restacking. As binder‐free supercapacitor electrode, it delivers a specific capacitance up to 169 F g−1 with surface‐normalized capacitance close to 21 μF cm−2 (intrinsic capacitance) and power density up to 7.5 kW kg−1, in 6 m KOH aqueous electrolyte. In the case of lithium‐ion battery anode, it shows remarkable advantages in terms of the initiate reversible Coulombic efficiency (61.3%), high specific capacity (932 mAh g−1 at 100 mA g−1), and robust long‐term retention (93.5% after 600 cycles at 2000 mAh g−1).  相似文献   

8.
Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high‐performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro‐, meso‐, and macro‐porous structures. The structure–property relationships of these materials and their application in advanced electrochemical devices are also discussed.  相似文献   

9.
Organic materials are both environmentally and economically attractive as potential electrode candidates. This Research News reports on a new class of stable and electrically conductive organic electrodes based on metal porphyrins with functional groups that are capable of electrochemical polymerization, rendering the materials promising for electrochemical applications. Their structural flexibility and the unique highly conjugated macrocyclic structure allows the produced organic electrodes to act as both cathode and anode materials giving access to fast charging as well as high cycling stability. The extreme thermal and chemical stability of the porphyrin‐based organic electrodes and their chemical versatility suggest an important role for these molecular systems in the further development of novel electrochemical energy storage applications.  相似文献   

10.
Grid‐scale energy storage batteries with electrode materials made from low‐cost, earth‐abundant elements are needed to meet the requirements of sustainable energy systems. Sodium‐ion batteries (SIBs) with iron‐based electrodes offer an attractive combination of low cost, plentiful structural diversity and high stability, making them ideal candidates for grid‐scale energy storage systems. Although various iron‐based cathode and anode materials have been synthesized and evaluated for sodium storage, further improvements are still required in terms of energy/power density and long cyclic stability for commercialization. In this Review, progress in iron‐based electrode materials for SIBs, including oxides, polyanions, ferrocyanides, and sulfides, is briefly summarized. In addition, the reaction mechanisms, electrochemical performance enhancements, structure–composition–performance relationships, merits and drawbacks of iron‐based electrode materials for SIBs are discussed. Such iron‐based electrode materials will be competitive and attractive electrodes for next‐generation energy storage devices.  相似文献   

11.
Improving volumetric energy density is one of the major challenges in nanostructured carbon electrodes for electrochemical energy storage device applications. Herein, a simple hydrothermal oxidation process of single‐walled carbon nanotube (SWNT) networks in dilute nitric acid is reported, enabling simultaneous physical densification and chemical functionalization of the as‐assembled randomly‐packed SWNT films. After the hydrothermal oxidation process, the density of the SWNT films increases from 0.63 to 1.02 g cm?3 and a considerable amount of redox‐active oxygen functional groups are introduced on the surface of the SWNTs. The functionalized SWNT films are used as positive electrodes against Li metal negative electrodes for potential Li‐ion capacitors or Li‐ion battery applications. The functionalized SWNT electrodes deliver high volumetric as well as gravimetric capacities, 154 Ah L?1 and 152 mAh g?1, respectively, owing to the surface redox reactions between the introduced oxygen functional groups and Li ions. In addition, these electrodes exhibit a remarkable rate‐capability by retaining its high capacity of 94 Ah L?1 (92 mAh g?1) at a high discharge rate of 10 A g?1. These results demonstrate the simple hydrothermal oxidation process as an attractive strategy for improving the volumetric performance of nanostructured carbon electrodes.  相似文献   

12.
The rate-determining process for electrochemical energy storage is largely determined by ion transport occurring in the electrode materials. Apart from decreasing the distance of ion diffusion, the enhancement of ionic mobility is crucial for ion transport. Here, a localized electron enhanced ion transport mechanism to promote ion mobility for ultrafast energy storage is proposed. Theoretical calculations and analysis reveal that highly localized electrons can be induced by intrinsic defects, and the migration barrier of ions can be obviously reduced. Consistently, experiment results reveal that this mechanism leads to an enhancement of Li/Na ion diffusivity by two orders of magnitude. At high mass loading of 10 mg cm−2 and high rate of 10C, a reversible energy storage capacity up to 190 mAh g−1 is achieved, which is ten times greater than achievable by commercial crystals with comparable dimensions.  相似文献   

13.
Compared to single metallic Ni or Co phosphides, bimetallic Ni–Co phosphides own ameliorative properties, such as high electrical conductivity, remarkable rate capability, upper specific capacity, and excellent cycle performance. Here, a simple one‐step solvothermal process is proposed for the synthesis of bouquet‐like cobalt‐doped nickel phosphite (Ni11(HPO3)8(OH)6), and the effect of the structure on the pseudocapacitive performance is investigated via a series of electrochemical measurements. It is found that when the cobalt content is low, the glycol/deionized water ratio is 1, and the reaction is under 200 °C for 20 h, the morphology of the sample is uniform and has the highest specific surface area. The cobalt‐doped Ni11(HPO3)8(OH)6 electrode presents a maximum specific capacitance of 714.8 F g?1. More significantly, aqueous and solid‐state flexible electrochemical energy storage devices are successfully assembled. The aqueous device shows a high energy density of 15.48 mWh cm?2 at the power density of 0.6 KW cm?2. The solid‐state device shows a high energy density of 14.72 mWh cm?2 at the power density of 0.6 KW cm?2. These excellent performances confirm that the cobalt‐doped Ni11(HPO3)8(OH)6 are promising materials for applications in electrochemical energy storage devices.  相似文献   

14.
15.
State‐of‐the‐art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene‐based hybrid two‐dimensional nanostructures. Here, the chemically integrated inorganic‐graphene hybrid two‐dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic‐graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic‐graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene‐based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed.  相似文献   

16.
17.
Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high‐performance hydrogen storage materials for on‐board applications and electrochemical energy storage materials for lithium‐ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano‐/microcombination, hybridization, pore‐structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.  相似文献   

18.
19.
Graphene is widely applied as an electrode material in energy storage fields. However, the strong π–π interaction between graphene layers and the stacking issues lead to a great loss of electrochemically active surface area, damaging the performance of graphene electrodes. Developing 3D graphene architectures that are constructed of graphene sheet subunits is an effective strategy to solve this problem. The graphene architectures can be directly utilized as binder‐free electrodes for energy storage devices. Furthermore, they can be used as a matrix to support active materials and further improve their electrochemical performance. Here, recent advances in synthesizing 3D graphene architectures and their composites as well as their application in different energy storage devices, including various battery systems and supercapacitors are reviewed. In addition, their challenges for application at the current stage are discussed and future development prospects are indicated.  相似文献   

20.
In recent years, the rapidly growing attention on MXenes makes the material a rising star in the 2D materials family. Although most researchers' interests are still focused on the properties of bare MXenes, little attention has been paid to the surface chemistry of MXenes and MXene‐based nanocomposites. To this end, this Review offers a comprehensive discussion on surface modified MXene‐based nanocomposites for energy conversion and storage (ECS) applications. Based on the structure and reaction mechanism, the related synthesis methods toward MXenes are briefly summarized. After the discussion of existing surface modification techniques, the surface modified MXene‐based nanocomposites and their inherent chemical principles are presented. Finally, the application of these surface modified nanocomposites for supercapacitors (SCs), lithium/sodium–ion batteries (LIBs/SIBs), and electrocatalytic water splitting is discussed. The challenges and prospects of MXene‐based nanocomposites for future ECS applications are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号