首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 345 毫秒
1.
2.
3.
This study presents a new 3D printing process, the Diels–Alder reversible thermoset (DART) process, and a first generation of printable DART resins, which exhibit thermoset properties at use temperatures, ultralow melt viscosity at print temperatures, smooth part surface finish, and as‐printed isotropic mechanical properties. This study utilizes dynamic covalent chemistry based on reversible furan‐maleimide Diels–Alder linkages in the polymers, which can be decrosslinked and melt‐processed during printing between 90 and 150 °C, and recrosslinked at lower temperatures to their entropically favored state. This study compares the first generation of DART materials to commonly 3D printed high‐toughness thermoplastics. Parts printed from typical fused filament fabrication compatible materials exhibit anisotropy of more than 50% and sometimes upward of 98% in toughness when deformed along the build direction, while the first generation of DART materials exhibit less than 4% toughness reduction when deformed along the build direction. At room temperature, the toughest DART materials exhibit baseline toughness of 18.59 ± 0.91 and 18.36 ± 0.57 MJ m?3 perpendicular and parallel to the build direction, respectively. DART printing will enable chemists, polymer engineers, materials scientists, and industrial designers to translate new robust materials possessing targeted thermomechanical properties, multiaxial toughness, smooth surface finish, and low anisotropy.  相似文献   

4.
Living cells can impart materials with advanced functions, such as sense‐and‐respond, chemical production, toxin remediation, energy generation and storage, self‐destruction, and self‐healing. Here, an approach is presented to use light to pattern Escherichia coli onto diverse materials by controlling the expression of curli fibers that anchor the formation of a biofilm. Different colors of light are used to express variants of the structural protein CsgA fused to different peptide tags. By projecting color images onto the material containing bacteria, this system can be used to pattern the growth of composite materials, including layers of protein and gold nanoparticles. This is used to pattern cells onto materials used for 3D printing, plastics (polystyrene), and textiles (cotton). Further, the adhered cells are demonstrated to respond to sensory information, including small molecules (IPTG and DAPG) and light from light‐emitting diodes. This work advances the capacity to engineer responsive living materials in which cells provide diverse functionality.  相似文献   

5.
Protein materials are gaining interest in nanomedicine because of the unique combination of regulatable function and structure. A main application of protein nanoparticles is as vehicles for cell‐targeted drug delivery in the form of nanoconjugates, in which a conventional or innovative drug is associated to a carrier protein. Here, a new nanomedical approach based on self‐assembling protein nanoparticles is developed in which a chemically homogeneous protein material acts, simultaneously, as vehicle and drug. For that, three proapoptotic peptidic factors are engineered to self‐assemble as protein‐only, fully stable nanoparticles that escape renal clearance, for the multivalent display of a CXCR4 ligand and the intracellular delivery into CXCR4+ colorectal cancer models. These materials, produced and purified in a single step from bacterial cells, show an excellent biodistribution upon systemic administration and local antitumoral effects. The design and generation of intrinsically therapeutic protein‐based materials offer unexpected opportunities in targeted drug delivery based on fully biocompatible, tailor‐made constructs.  相似文献   

6.
Engineering devices based upon the interfacing of biological with inorganic systems have led to fascinating research results and present important implications for next‐generation technologies. The development of cell‐ and protein‐based micro/nano systems has demonstrated that several key factors must be considered when establishing fabrication rules. These include material interface properties, preserving biological viability, as well as self‐assembly as a device‐fabrication methodology, to name a few. Here, we present two proposed devices that have been developed through the application of these principles. They include muscle‐powered microfabricated devices, as well as protein‐functionalized polymeric vesicles based on protein‐coupling reactions. These systems have successfully bridged the gap between biological and conventional engineering to yield exciting prospects, as well as important lessons and questions for the development of cell‐/protein‐based hybrids.  相似文献   

7.
8.
The mechanical properties of spider silks drive interest as sources of new materials. However, there remains a lot to learn regarding the relationships between sequence, structure, and mechanical properties. In order to predict the types of sequence–functional relationships, synthesis–characterization–computation are integrated using recombinant spider silk‐like block copolymers. Two designs are studied, both with origins from the spider Nephila clavipes. These proteins are studied both experimentally and in silico to understand the relationships between sequence chemistry, processing, structure, and materials function. Films formed from the two proteins are thoroughly characterized. In parallel, molecular modeling is used to assess the propensity of the two sequences to form β‐sheets or crystalline structures. The results demonstrate that the modeling predicts the structural differences between the two silk‐like polymers and these features can also be related to differences in functional outcomes. With this example of relating sequence design (hydrophobic–hydrophilic domains), experiment (genetic design and synthesis), processing (film and fiber formation) and modeling (predictions of crystallinity), synergy among these methods is demonstrated for predictable material outcomes. This approach offers a robust discovery path when looking towards next generation approaches to targeted materials outcomes.  相似文献   

9.
Self‐healable and stretchable energy‐harvesting materials can provide a new avenue for the realization of self‐powered wearable electronics, including electronic skins, whose main materials are required to be robust to and stable under external damage and severe mechanical stresses. However, thermoelectric (TE) materials showing both self‐healing properties and stretchability have not yet been demonstrated despite their great potential to harvest thermal energy in the human body. As most existing TE materials are either mechanically brittle or unrecoverable after being subjected to damage, a novel approach is necessary for designing such materials. Herein, self‐healable and stretchable TE materials based on all‐organic composite system wherein polymer semiconductor nanowires are p‐doped with a molecular dopant and embedded in a thermoplastic elastomer matrix are reported. The polymer nanowires are electrically percolated in the matrix, and the resulting composite materials exhibit good TE performance. The composites also exhibit both excellent self‐healing properties under mild heat and pressure conditions and good stretchability. It is believed that this work can be a cornerstone for the design of self‐healable and stretchable energy‐harvesting materials as it provides useful guidelines for imparting electrical conductivity to insulating thermoplastic elastomers, which typically possess versatile and useful mechanical properties.  相似文献   

10.
Low‐dimensional carbon materials, i.e., graphene and its functionalization with a number of semiconductor or conductor materials, such as noble metal nanostructures, have primary importance for their potential exploitation as electro‐active materials, i.e., as new generation catalysts. Here, low‐cost, solution chemistry‐based, two‐step functionalization of an individual, free‐standing, chemical vapor‐deposited graphene monolayer is reported, with noble metal (Au, Pt, Pd) nanoparticles to build up two‐side decorated graphene‐based metal nanoclusters. Either the same metal (symmetric decoration) or different metals (asymmetric decoration) are used for the preparation of bimetal graphene sandwiches, which are adsorbed at the liquid/liquid (organic/water) interface. The successful fabrication of such dual‐decorated graphene‐based metal nanocomposites is confirmed using various microscopic techniques (scanning electron and atomic force microscopies) and several spectroscopic methods (x‐ray photoelectron, energy dispersive x‐ray, mapping mode Raman spectroscopy, and electron energy loss spectroscopy). Taken together, it is inferred from these techniques that the location of deposited metal nanoparticles is on opposite sides of the graphene.  相似文献   

11.
12.
13.
14.
In this paper, the fabrication and characterization of triple‐shape polymeric composites (TSPCs) that, unlike traditional shape memory polymers (SMPs), are capable of fixing two temporary shapes and recovering sequentially from the first temporary shape (shape 1) to the second temporary shape (shape 2), and eventually to the permanent shape (shape 3) upon heating, are reported. This is technically achieved by incorporating non‐woven thermoplastic fibers (average diameter ~760 nm) of a low‐Tm semicrystalline polymer into a Tg‐based SMP matrix. The resulting composites display two well‐separated transitions, one from the glass transition of the matrix and the other from the melting of the fibers, which are subsequently used for the fixing/recovery of two temporary shapes. Three thermomechanical programming processes with different shape fixing protocols are proposed and explored. The intrinsic versatility of this composite approach enables an unprecedented large degree of design flexibility for functional triple‐shape polymers and systems.  相似文献   

15.
The pressure sensitive adhesion characteristic of a protein complex extracted from squid ring teeth (SRT), which exhibits an unusual and reversible transition from a solid to a melt, is studied. The native SRT is an elastomeric protein complex that has standard amino acids, and it does not function as adhesives in nature. The SRT can be thermally shaped into any 3D geometry (e.g., thin films, ribbons, colloids), and it has a glass transition temperature of 32 °C in water. Underwater adhesion strength of the protein film is approximately 1.5–2.5 MPa. The thermoplastic protein film could potentially be used in an array of fields, including dental resins, bandages for wound healing, and surgical sutures in the body.  相似文献   

16.
Physically flexible electronics offer a wide range of benefits, including the development of next‐generation consumer electronics and healthcare products. The advancement of physical flexibility, typically achieved by the reduction of the total device thickness, including substrates and encapsulation layers, shows great promise for skin‐laminated electronics. Organic electronics—devices relying on carbon‐based materials—offer many advantages over their inorganic counterparts, including the following: significantly lower fabrication temperatures resulting in alternative fabrication techniques, including inkjet and roll‐to‐roll printing, enabling low‐cost and large‐area fabrication; biocompatibility; and spectacular physical flexibility. This article presents a review, spanning the last two decades, of organic field‐effect transistors with the total thickness of just a few microns as well as devices demonstrated in this decade with a total thickness of few hundred of nanometers. A handful of demonstrations of other organic electronic thin film devices are also presented.  相似文献   

17.
Scalable fabrication of spherical particles at both the micro‐ and nanoscales is of significant importance for applications spanning optical devices, electronics, targeted drug delivery, biodevices, sensors, and cosmetics. However, current top‐down and bottom‐up fabrication methods are unable to provide the full spectrum of uniformly sized, well‐ordered, and high‐quality spheres due to their inherent restrictions. Here, a generic, scalable, and precisely controllable fabrication method is demonstrated for generating spherical particles in a full range of diameters from microscale to nanoscale. This method begins with a macroscopic composite multimaterial solid‐state preform drawn into a fiber that defines precisely the initial conditions for the process. It is then followed by CO2 laser heating to enable the transformation from a continuous fiber core into a series of homogeneous spheres via Plateau–Rayleigh capillary instability inside the fiber. This physical breakup method applies to a wide range of functional materials with different melting temperatures from 400 to 2400 K and 10 orders of difference in fiber core/cladding viscosity ratio. Furthermore, an ordered array of silicon‐based whispering‐gallery mode resonators with the Q factor as high as 7.1 × 105 is achieved, owing to the process induced ultrasmooth surface and highly crystalline nature.  相似文献   

18.
The fabrication of very narrow metal lines by the lift‐off technique, especially below sub‐10 nm, is challenging due to thinner resist requirements in order to achieve the lithographic resolution. At such small length scales, when the grain size becomes comparable with the line‐width, the built‐in stress in the metal film can cause a break to occur at a grain boundary. Moreover, the line‐width roughness (LWR) from the patterned resist can result in deposited metal lines with a very high LWR, leading to an adverse change in device characteristics. Here a new approach that is not based on the lift‐off technique but rather on low temperature hydrogen reduction of electron‐beam patterned metal naphthenates is demonstrated. This not only enables the fabrication of sub‐10 nm metal lines of good integrity, but also of low LWR, below the limit of 3.2 nm discussed in the International Technology Roadmap for Semiconductors. Using this method, sub‐10 nm nickel wires are obtained by reducing patterned nickel naphthenate lines in a hydrogen‐rich atmosphere at 500 °C for 1 h. The LWR (i.e., 3 σLWR) of these nickel nanolines was found to be 2.9 nm. The technique is general and is likely to be suitable for fabrication of nanostructures of most commonly used metals (and their alloys), such as iron, cobalt, nickel, copper, tungsten, molybdenum, and so on, from their respective metal–organic compounds.  相似文献   

19.
Results obtained from modeling the light out‐coupling efficiency of an organic light‐emitting diode (OLED) structure containing the recently developed first‐generation fac‐tris(2‐phenylpyridine) iridium‐cored dendrimer (Ir‐G1) as the emissive organic layer are reported. Comparison of the results obtained for this material with those of corresponding structures based upon small‐molecule and polymer emissive materials is made. The calculations of out‐coupling efficiency performed here take account of many factors, including the photoluminescence quantum yield (PLQY) of the emissive materials. Further, how each material system might perform with regard to out‐coupling efficiency when a range of possible PLQYs are considered is shown. The calculations show that the very high efficiency of dendrimer‐based OLEDs can be attributed primarily to their high PLQY.  相似文献   

20.
Carbon nanotube‐silicon (CNT‐Si)‐based heterojunction solar cells (HJSCs) are a promising photovoltaic (PV) system. Herein, few‐layer black phosphorus (FL‐BP) sheets are produced in N‐methyl‐2‐pyrrolidone (NMP) using microwave‐assisted liquid‐phase exfoliation and introduced into the CNTs‐Si‐based HJSCs for the first time. The NMP‐based FL‐BP sheets remain stable after mixing with aqueous CNT dispersion for device fabrication. Due to their unique 2D structure and p‐type dominated conduction, the FL‐BP/NMP incorporated CNT‐Si devices show an impressive improvement in the power conversion efficiency from 7.52% (control CNT‐Si cell) to 9.37%. Our density‐functional theory calculation reveals that lowest unoccupied molecular orbital (LUMO) of FL‐BP is higher in energy than that of single‐walled CNT. Therefore, we observed a reduction in the orbitals localized on FL‐BP upon highest occupied molecular orbital to LUMO transition, which corresponds to an improved charge transport. This study opens a new avenue in utilizing 2D phosphorene nanosheets for next‐generation PVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号