首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nonfullerene acceptors (NFAs) in blends with highly crystalline donor polymers have been shown to yield particularly high device voltage outputs, but typically more modest quantum yields for photocurrent generation as well as often lower fill factors (FF). In this study, we employ transient optical and optoelectronic analysis to elucidate the factors determining device photocurrent and FF in blends of the highly crystalline donor polymer PffBT4T‐2OD with the promising NFA FBR or the more widely studied fullerene acceptor PC71BM. Geminate recombination losses, as measured by ultrafast transient absorption spectroscopy, are observed to be significantly higher for PffBT4T‐2OD:FBR blends. This is assigned to the smaller LUMO‐LUMO offset of the PffBT4T‐2OD:FBR blends relative to PffBT4T‐2OD:PC71BM, resulting in the lower photocurrent generation efficiency obtained with FBR. Employing time delayed charge extraction measurements, these geminate recombination losses are observed to be field dependent, resulting in the lower FF observed with PffBT4T‐2OD:FBR devices. These data therefore provide a detailed understanding of the impact of acceptor design, and particularly acceptor energetics, on organic solar cell performance. Our study concludes with a discussion of the implications of these results for the design of NFAs in organic solar cells.  相似文献   

2.
    
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) has been one of the most established hole transport layers (HTL) in organic solar cells (OSCs) for several decades. However, the presence of PSS ions is known to deteriorate device performance via a number of mechanisms including diffusion to the HTL-active layer interface and unwanted local chemical reactions. In this study, it is shown that PSS ions can also result in local p-doping in the high efficiency donor:non-fullerene acceptor blends – resulting in photocurrent loss. To address these issues, a facile and effective approach is reported to improve the OSC performance through a two-component hole transport layer (HTL) consisting of a self-assembled monolayer of 2PACz ([2-(9H-Carbazol-9-yl)ethyl]phosphonic acid) and PEDOT:PSS. The power conversion efficiency (PCE) of 17.1% using devices with PEDOT:PSS HTL improved to 17.7% when the PEDOT:PSS/2PACz two-component HTL is used. The improved performance is attributed to the overlaid 2PACz layer preventing the formation of an intermixed p-doped PSS ion rich region (≈5–10 nm) at the bulk heterojunction-HTL contact interface, resulting in decreased recombination losses and improved stability. Moreover, the 2PACz monolayer is also found to reduce electrical shunts that ultimately yield improved performance in large area devices with PCE enhanced from 12.3% to 13.3% in 1 cm2 cells.  相似文献   

3.
    
A combination of transient photovoltage (TPV), voltage dependent charge extraction (CE), and time delayed collection field (TDCF) measurements is applied to poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b']dithiophene‐2,6‐diyl] [3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl] thieno[3,4‐b]thiophenediyl]] (PTB7):[6,6]‐phenyl‐C71‐butyric acid (PC71BM) bulk heterojunction solar cells to analyze the limitations of photovoltaic performance. Devices are processed from pure chlorobenzene (CB) solution and a subset is optimized with 1,8‐diiodooctane (DIO) as co‐solvent. The dramatic changes in device performance are discussed with respect to the dominating loss processes. While in the devices processed from CB solution severe geminate and nongeminate recombination is observed, the use of DIO facilitates efficient polaron pair dissociation and minimizes geminate recombination. Thus, from the determined charge carrier decay rate under open circuit conditions and the voltage dependent charge carrier densities n(V), the nongeminate loss current Jloss of the samples with DIO alone enables the reconstruction of the current/voltage (j/V) characteristics across the whole operational voltage range. Geminate and nongeminate losses are considered to describe the j/V response of cells prepared without additive, but lead to a clearly overestimated device performance. The deviation between measured and reconstructed j/V characteristics is attributed to trapped charges in isolated domains of pure fullerene phases.  相似文献   

4.
    
Evidence for a correlation between the dynamics of emissive non‐geminate charge recombination within organic photovoltaic (OPV) blend films and the photocurrent generation efficiency of the corresponding blend‐based solar cells is presented. Two model OPV systems that consist of binary blends of electron acceptor N′‐bis(1‐ethylpropyl)‐3,4,9,10‐perylene tetracarboxy diimide (PDI) with either poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) or poly(9,9‐dioctylindenofluorene‐co‐benzothiadiazole) (PIF8BT) as electron donor are studied. For the F8BT:PDI and PIF8BT:PDI devices photocurrent generation efficiency is shown to be related to the PDI crystallinity. In contrast to the F8BT:PDI system, thermal annealing of the PIF8BT:PDI layer at 90 °C has a positive impact on the photocurrent generation efficiency and yields a corresponding increase in PL quenching. The devices of both blends have a strongly reduced photocurrent on higher temperature annealing at 120 °C. Delayed luminescence spectroscopy suggests that the improved efficiency of photocurrent generation for the 90 °C annealed PIF8BT:PDI layer is a result of optimized transport of the photogenerated charge‐carriers as well as of enhanced PL quenching due to the maintenance of optimized polymer/PDI interfaces. The studies propose that charge transport in the blend films can be indirectly monitored from the recombination dynamics of free carriers that cause the delayed luminescence. For the F8BT:PDI and PIF8BT:PDI blend films these dynamics are best described by a power‐law decay function and are found to be temperature dependent.  相似文献   

5.
    
Two compatible donors (PBDB‐T and PTB7‐Th) and two miscible acceptors (ITIC and FOIC) are employed to deliver a parallel‐alloy morphology model in non‐fullerene‐based quaternary organic solar cells. PBDB‐T and PTB7‐Th form a parallel link with a slight adjustment of molecular packing into enhanced face‐on crystallites while ITIC disperses into discontinuous FOIC microcrystal regions to form continuous and ordered alloy‐like acceptor phases. Characterization of blend morphology highlights the parallel‐alloy model—enabled by the introduction of PBDB‐T and ITIC, which contributes to improved molecular packing and reduced domain size resulting in efficient charge generation and consistent transport channels. This successful parallel‐alloy quaternary blend morphology demonstrates an enhanced optical absorption, optimized domain size, and nanostructures toward simultaneous improvement in charge transfer and transport. Therefore, a power conversion efficiency of 12.52% is realized for a quaternary device which is 6% higher than the ternary device (PBDB‐T:PTB7‐Th:FOIC) and 12% higher than the binary device (PTB7‐Th:FOIC). Domination of quaternary devices over ternary and binary blends, which is another feasible way to realize highly efficient devices through further investigation of quaternary OSCs, is presented.  相似文献   

6.
    
2D conjugated side‐chain engineering is an effective strategy that is widely utilized to construct benzodithiophene‐based polymers. Herein, an unconjugated side‐chain strategy to design fused‐benzodithiophene‐based non‐fullerene small molecule acceptors (SMAs) via vertical aromatic side‐chain engineering on the ladder‐type core is employed. Three SMAs named BTTIC‐Th, BTTIC‐TT, and BTTIC‐Ph with thiophene, thieno[3,2‐b]thiophene, and benzene, respectively, as side chains, are designed and synthesized. Three SMAs exhibit similar absorption ranges but different lowest unoccupied molecular orbital (LUMO) energy levels due to the different strength of the δ‐inductive effect between vertical aromatic side chains and their electron‐rich core. Organic solar cells based on PBDB‐T:BTTIC‐TT achieve a power conversion efficiency (PCE) of 13.44%, which is higher than the PCE of devices based on PBDB‐T:BTTIC‐Th (12.91%) and PBDB‐T:BTTIC‐Ph (9.14%). The difference in device performance is investigated by electrical and morphological characterizations. A large domain size and different types of π–π stacking are found in the bulk heterojunction layer of PBDB‐T:BTTIC‐Ph blend film, which are detrimental to exciton dissociation and charge transport. Overall, it is demonstrated that when designing unconjugated side chains, thieno[3,2‐b]thiophene is superior to thiophene and benzene through its dual roles of promoting the LUMO energy level and optimizing the morphology. These results shed light on the side‐chain engineering of high‐performance non‐fullerene SMAs.  相似文献   

7.
    
Wide‐bandgap conjugated polymers with a linear naphthacenodithiophene (NDT) donor unit are herein reported along with their performance in both transistor and solar cell devices. The monomer is synthesized starting from 2,6‐dihydroxynaphthalene with a double Fries rearrangement as the key step. By copolymerization with 2,1,3‐benzothiadiazole (BT) via a palladium‐catalyzed Suzuki coupling reaction, NDT‐BT co‐polymers with high molecular weights and narrow polydispersities are afforded. These novel wide‐bandgap polymers are evaluated as the semiconducting polymer in both organic field effect transistor and organic photovoltaic applications. The synthesized polymers reveal an optical bandgap in the range of 1.8 eV with an electron affinity of 3.6 eV which provides sufficient energy offset for electron transfer to PC70BM acceptors. In organic field effect transistors, the synthesized polymers demonstrate high hole mobilities of around 0.4 cm2 V–1 s–1. By using a blend of NDT‐BT with PC70BM as absorber layer in organic bulk heterojunction solar cells, power conversion efficiencies of 7.5% are obtained. This value is among the highest obtained for polymers with a wider bandgap (larger than 1.7 eV), making this polymer also interesting for application in tandem or multijunction solar cells.  相似文献   

8.
    
Regarded as a critical step in commercial applications, scalable printing technology has become a research frontier in the field of organic solar cells. However, inevitable efficiency loss always occurs in the lab‐to‐manufacturing translation due to the different fabrication processes. In fact, the decline of photovoltaic performance is mainly related to voltage loss, which is mainly affected by the diversity of phase separation morphology and the chemical structures of photoactive materials. Fullerene derivative indene‐C60 bisadduct (ICBA) is introduced into a PBDB‐T‐2F:IT‐4F system to control the active layer morphology during blade‐coating process. Accordingly, as a symmetrical fullerene derivative, ICBA can regulate the crystallization tendency and molecular packing orientation and suppress charge carrier recombination. This ternary strategy overcomes the morphology issues caused by weaker shear impulse in blade‐coating process. Benefiting from the reduced nonradiative recombination loss, 1.05 cm2 devices are fabricated by blade coating with a power conversion efficiency of 13.70%. This approach provides an effective support for recovering the voltage loss during scalable printing approaches.  相似文献   

9.
    
The recombination dynamics of charge carriers in organic bulk‐heterojunction (BHJ) solar cells made of the blend system poly(2,5‐bis(3‐dodecylthiophen‐2‐yl)thieno[2,3‐b]thiophene) (pBTCT‐C12):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) with a donor–acceptor ratio of 1:1 and 1:4 are studied here. The techniques of charge‐carrier extraction by linearly increasing voltage (photo‐CELIV) and, as local probe, time‐resolved microwave conductivity are used. A difference of one order of magnitude is observed between the two blends in the initially extracted charge‐carrier concentration in the photo‐CELIV experiment, which can be assigned to an enhanced geminate recombination that arises through a fine interpenetrating network with isolated phase regions in the 1:1 pBTCT‐C12:PC61BM BHJ solar cells. In contrast, extensive phase segregation in 1:4 blend devices leads to an efficient polaron generation that results in an increased short‐circuit current density of the solar cells. For both studied ratios a bimolecular recombination of polarons is found using the complementary experiments. The charge‐carrier decay order of above two for temperatures below 300 K can be explained on the basis of a release of trapped charges. This mechanism leads to delayed bimolecular recombination processes. The experimental findings can be generalized to all polymer:fullerene blend systems allowing for phase segregation.  相似文献   

10.
    
A series of donor–acceptor (D–A) conjugated polymers utilizing 4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophene ( DTG ) as the electron rich unit and three electron withdrawing units of varying strength, namely 2‐octyl‐2H‐benzo[d][1,2,3]triazole ( BTz ), 5,6‐difluorobenzo[c][1,2,5]thiadiazole ( DFBT ) and [1,2,5]thiadiazolo[3,4‐c]pyridine ( PT ) are reported. It is demonstrated how the choice of the acceptor unit ( BTz , DFBT , PT ) influences the relative positions of the energy levels, the intramolecular transition energy (ICT), the optical band gap (Egopt), and the structural conformation of the DTG ‐based co‐polymers. Moreover, the photovoltaic performance of poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐([1,2,5]thiadiazolo[3,4‐c]pyridine)] ( PDTG‐PT ), poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐(2‐octyl‐2H‐benzo[d][1,2,3]triazole)] ( PDTG‐BTz ), and poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐(5,6‐difluorobenzo[c][1,2,5]thiadiazole)] ( PDTG‐DFBT ) is studied in blends with [6,6]‐phenyl‐C70‐butyric acid methyl ester ( PC70BM ). The highest power conversion efficiency (PCE) is obtained by PDTG‐PT (5.2%) in normal architecture. The PCE of PDTG‐PT is further improved to 6.6% when the device architecture is modified from normal to inverted. Therefore, PDTG‐PT is an ideal candidate for application in tandem solar cells configuration due to its high efficiency at very low band gaps (Egopt = 1.32 eV). Finally, the 6.6% PCE is the highest reported for all the co‐polymers containing bridged bithiophenes with 5‐member fused rings in the central core and possessing an Egopt below 1.4 eV.  相似文献   

11.
    
Batch-to-batch variation widely exists in conjugated donor-acceptor (D-A) block copolymer materials and plays a crucial role in photovoltaic performance of organic solar cells (OSCs). To investigate the influence of conjugated-length of the intermediate block on the performance of single-component OSC (SCOSCs), herein, four batches of conjugated block copolymers (CBCs, PB-b-PY-1, PB-b-PY-2, PB-b-PY-3, and PB-b-PY-4) are synthesized, which possess different D/A block lengths. As the conjugation length of intermediate D-block increases, the lamellar packing order of these CBCs shows a monotonically increasing trend, leading to stronger absorption spectra in the visible region, efficient charge transfer, and suppressed carrier recombination loss. Consequently, the PB-b-PY-4 device yields a higher efficiency of 13.28% than those of other CBCs. This study demonstrates the effectiveness of the conjugated length of intermediate D-blocks in designing high-performance conjugated D-A block copolymers, which paves the way toward developing high-performance SCOSCs.  相似文献   

12.
Hexa-peri-hexabenzocoronene (HBC) is a disc-shaped conjugated molecule with strong π-π stacking property, high intrinsic charge mobility and good self-assembly property. But for a long time, the organic photovoltaic (OPV) solar cells based on HBC small organic molecules demonstrated low power conversion efficiencies (PCEs). In this study, a series of polymers named as PHBCDPPC20, PHBCDPPC8, PHBCDPPF and PHBCDPPDT were designed and synthesized through copolymerization of HBC with bulky mesityl substituents and strong electron-withdrawing diketopyrrolopyrrole (DPP) with different alkyl side chains and various π-bridges. Introduction of DPP unit into the HBC derivatives broadened the absorption spectra and lowered the band gaps. Bulky mesityl substituents attached to periphery of HBC prevented polymers from self-aggregating into too large domain size in the blend films of photovoltaic devices. The different π-bridges have significant effect on the structure conformation of the polymers. The polymer PHBCDPPDT with bithiophene π-bridges demonstrated the broadest absorption for its extensive π-conjugation and more coplanar conformation compared with the thiophene π-bridge one. PHBCDPPC20, PHBCDPPC8, PHBCDPPF and PHBCDPPDT gave field-effect hole mobilities of 1.35 × 10−3, 2.31 × 10−4, 2.79 × 10−4 and 8.60 × 10−3 cm2 V−1 s−1, respectively. The solar cells based on these polymers displayed PCEs of 2.12%, 2.85%, 1.89% and 2.74%. To our knowledge, 2.85% is the highest PCE for the HBC-based photovoltaic materials till now.  相似文献   

13.
14.
    
Substitution of the heteroatoms in the aromatic end‐groups of three diketopyrrolopyrrole containing small molecules is investigated to evaluate how such substitutions affect various physical properties, charge transport, and the performance in bulk heterojunction solar cells. While the optical absorption and frontier orbital energy levels are insensitive to heteroatom substitution, the materials' solubility, thermal properties, film morphology, charge carrier mobility, and photovoltaic performance are altered significantly. Differences in material properties are found to arise from changes in intra‐ and intermolecular interactions in the solid state caused by heteroatom substitution, as revealed by the single crystal structures of three compounds. This study demonstrates a systematic investigation of structure–property relationships in conjugated small molecules.  相似文献   

15.
    
The characteristic doping process in polymer light‐emitting electrochemical cells (LECs) causes a tradeoff between luminescence intensity and efficiency. Experiments and numerical modeling on thin film polymer LECs show that, on the one hand, carrier injection and transport benefit from electrochemical doping, leading to increased electron‐hole recombination. On the other hand, the radiative recombination efficiency is reduced by exciton quenching by polarons involved in the doping. Consequently, the quasi‐steady‐state luminescent efficiency decreases with increasing ion concentration. The transient of the luminescent efficiency shows a characteristic roll‐off while the current continuously increases, attributed to ongoing electrochemical doping and the associated exciton quenching. Both effects can be modeled by exciton polaron‐quenching via diffusion‐assisted Förster resonance energy transfer. These results indicate that the tradeoff between efficiency and intensity is fundamental, suggesting that the application realm of future LECs should be sought in high‐brightness, low‐production cost devices, rather than in high‐efficiency devices.  相似文献   

16.
    
Hole transport layer (HTL) plays a critical role for achieving high performance solution‐processed optoelectronics including organic electronics. For organic solar cells (OSCs), the inverted structure has been widely adopted to achieve prolonged stability. However, there are limited studies of p‐type effective HTL on top of the organic active layer (hereafter named as top HTL) for inverted OSCs. Currently, p‐type top HTLs are mainly 2D materials, which have an intrinsic vertical conduction limitation and are too thin to function as practical HTL for large area optoelectronic applications. In the present study, a novel self‐assembled quasi‐3D nanocomposite is demonstrated as a p‐type top HTL. Remarkably, the novel HTL achieves ≈15 times enhanced conductivity and ≈16 times extended thickness compared to the 2D counterpart. By applying this novel HTL in inverted OSCs covering fullerene and non‐fullerene systems, device performance is significantly improved. The champion power conversion efficiency reaches 12.13%, which is the highest reported performance of solution processed HTL based inverted OSCs. Furthermore, the stability of OSCs is dramatically enhanced compared with conventional devices. The work contributes to not only evolving the highly stable and large scale OSCs for practical applications but also diversifying the strategies to improve device performance.  相似文献   

17.
    
The physical origin of the open‐circuit voltage in bulk heterojunction solar cells is still not well understood. While significant evidence exists to indicate that the open‐circuit voltage is limited by the molecular orbital energies of the heterojunction components, it is clear that this picture is not sufficient to explain the significant variations which often occur between cells fabricated from the same heterojunction components. We present here an analysis of the variation in open‐circuit voltage between 0.4–0.65 V observed for a range of P3HT/PCBM solar cells where device deposition conditions, electrode structure, active‐layer thickness and device polarity are varied. The analysis quantifies non‐geminate recombination losses of dissociated carriers in these cells, measured under device operating conditions. It is found that at open‐circuit, losses due to non‐geminate recombination are sufficiently large that other loss pathways may effectively be neglected. Variations in open‐circuit voltage between different devices are shown to arise from differences in the rate coefficient for non‐geminate recombination, and from differences in the charge densities in the photoactive layer of the device. The origin of these differences is discussed, particularly with regard to variations in film microstructure. By separately quantifying these differences in rate coefficient and charge density, and by application of a simple physical model based upon the assumption that open‐circuit is reached when the flux of charge photogeneration is matched by the flux of non‐geminate recombination, we are able to calculate correctly the open‐circuit voltage for all the cells studied to within an accuracy of ±5 mV.  相似文献   

18.
    
Thickness‐insensitive small molecule acceptors (SMAs) are still a great challenge for developing thick‐film organic solar cells (OSCs) towards practical use. Herein, two SMAs, MF1 and MF2, are designed and synthesized by employing a bifunctional end group with fluorine and methyl moieties. Combined with fused‐ring cores with alkyl side chains, both MF1 and MF2 exhibit ordered π–π stacking and high charge carrier mobilities in neat and blend films. The champion devices based on PM7:MF1 and PM7:MF2 deliver high power conversion efficiencies (PCEs) of 12.4% and 13.7%, and high fill factors (FFs) of 78.3% and 74.5%, respectively. With increasing active layer thickness, the FFs of the OSCs decrease relatively slowly, demonstrating the preferrable properties of MF1 and MF2 in terms of their thickness insensitivity, especially for MF1. As a result, the two thick‐film OSCs achieve over 11% PCEs at an active layer thickness over 400 nm (an FF close to 70% for PM7:MF1) and over 10% PCEs when the thickness is increased up to 500 nm. These are the highest PCEs among OSCs with such active layer thicknesses to date. This work reveals a molecular design strategy by reasonably combining fluorine and methyl together to simultaneously enhance charge carrier mobilities and fine‐tune the morphology, which is beneficial to achieve high‐performance thick‐film OSCs.  相似文献   

19.
    
The synthesis of donor‐acceptor molecules involving triarylamines and dicyanovinyl blocks is described. Optical and electrochemical results show that rigidification of the acceptor part of the molecule by a covalent bridge leads to a ca. 0.20 eV increase of the band gap due to a parallel increase of the lowest unoccupied molecular orbital level. A preliminary evaluation of these compounds as donor materials in organic solar cells shows that although this structural modification reduces the light‐harvesting properties of the donor molecule, it nevertheless induces an increase of the efficiency of the resulting solar cells due to a simultaneous improvement of the open‐circuit voltage and fill factor.  相似文献   

20.
    
Interface in perovskite solar cells (PSCs) is of vital importance because it dominates deep-level defects and non-radiative recombination, thus impacting both efficiency and stability further. Herein, a symmetrical acceptor–donor–acceptor (A–D–A) conjugated molecule with the core architecture of terthieno[3,2-b hiophene and 2-(3-oxo-2,3-dihydro-1 H-inden-1-ylidene)malononitrile, named 6TIC, as a versatile buffer layer, is adopted to enhance photovoltaic performance and stability simultaneously. It is found that the conjugated molecule filling at grain boundaries and surface can not only chemically anchor with perovskite components to substantially eliminate interfacial defects and suppress detestable non-radiative recombination, but also effectively improve the energy level alignment and facilitate charge transfer efficiency at the interface, resulting in an excellent power conversion efficiency of 24.81% with an admirable fill factor of 84.5%. Furthermore, benefiting from the unexceptionable surface protection effect of the hydrophobic buffer layer, greatly improved operational stability is delivered, with retaining 90% of initial efficiency for 960 h aging in a relative humidity of 60 ± 5% air and 1450 h aging under continuous 85 °C heating stress. This strategy may provide a new avenue for advancing high-efficiency and stable PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号