共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid semiconductor‐polymer nanostructured solar cells hold the promise of photovoltaic energy conversion based on abundant and nontoxic materials and scalable manufacturing processes. After a decade of intense research activity, hybrid solar cells still exhibit low short‐circuit currents and moderate open‐circuit voltages. These bottlenecks call for a detailed understanding of the physics underlying the device operation at the nanoscale. Using first‐principles calculations the ideal energy‐level alignment of hybrid solar cell interfaces based on the wide bandgap semiconductor ZnO and the polymer poly(3‐hexylthiophene) (P3HT) is investigated. The interfacial charge transfer is quantified and it is shown that this effect increases the ideal open‐circuit voltage with respect to the electron‐affinity rule by as much as 0.5 V. The results of this work suggests that there is significant room for optimizing this class of excitonic solar cells by tailoring the semiconductor/polymer interface at the nanoscale. 相似文献
2.
Jung Tae Park Jacob H. Prosser Sung Hoon Ahn Sang Jin Kim Jong Hak Kim Daeyeon Lee 《Advanced functional materials》2013,23(17):2193-2200
High efficiency dye‐sensitized solar cells (DSSCs) are fabricated with a heterostructured photoanode that consists of a 500‐nm‐thick organized mesoporous TiO2 (om‐TiO2) interfacial layer (IF layer), a 7 or 10‐μm thick nanocrystalline TiO2 layer (NC layer), and a 2‐μm‐thick mesoporous Bragg stack (meso‐BS layer) as the bottom, middle and top layers, respectively. An om‐TiO2 layer with a high porosity, transmittance, and interconnectivity is prepared via a sol‐gel process, in which a poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer is used as a structure‐directing agent. The meso‐BS layer with large pores is prepared via alternating deposition of om‐TiO2 and colloidal SiO2 (col‐SiO2) layers. Structure and optical properties (refractive index) of the om‐TiO2 and meso‐BS layers are studied and the morphology of the heterostructured photoanode is characterized. DSSCs fabricated with the heterostructured IF/NC/BS photoanode and combined with a polymerized ionic liquid (PIL) exhibit an energy conversion efficiencies of 6.6% at 100 mW/cm2, one of the highest reported for solid‐state DSSCs and much larger than cells prepared with only a IF/NC layer (6.0%) or a NC layer (4.5%). Improvements in energy conversion efficiency are attributed to the combination of improved light harvesting, decreased resistance at the electrode/electrolyte interface, and excellent electrolyte infiltration. 相似文献
3.
Influence of the Electron Deficient Co‐Monomer on the Optoelectronic Properties and Photovoltaic Performance of Dithienogermole‐based Co‐Polymers 下载免费PDF全文
Chin Pang Yau Zhuping Fei Raja Shahid Ashraf Munazza Shahid Scott E. Watkins Pichaya Pattanasattayavong Thomas D. Anthopoulos Vasilis G. Gregoriou Christos L. Chochos Martin Heeney 《Advanced functional materials》2014,24(5):678-687
A series of donor–acceptor (D–A) conjugated polymers utilizing 4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophene ( DTG ) as the electron rich unit and three electron withdrawing units of varying strength, namely 2‐octyl‐2H‐benzo[d][1,2,3]triazole ( BTz ), 5,6‐difluorobenzo[c][1,2,5]thiadiazole ( DFBT ) and [1,2,5]thiadiazolo[3,4‐c]pyridine ( PT ) are reported. It is demonstrated how the choice of the acceptor unit ( BTz , DFBT , PT ) influences the relative positions of the energy levels, the intramolecular transition energy (ICT), the optical band gap (Egopt), and the structural conformation of the DTG ‐based co‐polymers. Moreover, the photovoltaic performance of poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐([1,2,5]thiadiazolo[3,4‐c]pyridine)] ( PDTG‐PT ), poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐(2‐octyl‐2H‐benzo[d][1,2,3]triazole)] ( PDTG‐BTz ), and poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐(5,6‐difluorobenzo[c][1,2,5]thiadiazole)] ( PDTG‐DFBT ) is studied in blends with [6,6]‐phenyl‐C70‐butyric acid methyl ester ( PC70BM ). The highest power conversion efficiency (PCE) is obtained by PDTG‐PT (5.2%) in normal architecture. The PCE of PDTG‐PT is further improved to 6.6% when the device architecture is modified from normal to inverted. Therefore, PDTG‐PT is an ideal candidate for application in tandem solar cells configuration due to its high efficiency at very low band gaps (Egopt = 1.32 eV). Finally, the 6.6% PCE is the highest reported for all the co‐polymers containing bridged bithiophenes with 5‐member fused rings in the central core and possessing an Egopt below 1.4 eV. 相似文献
4.
Lilian Chang Hans W. A. Lademann Jörg‐Bernd Bonekamp Klaus Meerholz Adam J. Moulé 《Advanced functional materials》2011,21(10):1779-1787
The performance of bulk‐heterojunction (BHJ) solar cells is strongly correlated with the nanoscale structure of the active layer. Various processing techniques have been explored to improve the nanoscale morphology of the BHJ layer, e.g., by varying the casting solvent, thermal annealing, solvent annealing, and solvent additives. This paper highlights the role of residual solvent in the “dried” BHJ layer, and the effect of residual solvents on PCBM diffusion and ultimately the stability of the morphology. We show that solvent is retained within the BHJ film despite prolonged heat treatment, leading to extensive phase separation, as demonstrated by the growth in the size and quantity of PCBM agglomerates. The addition of a small volume fraction of nitrobenzene to the casting solution inhibits the diffusion of PCBM in the dry film, resulting in smaller PCBM agglomerates, and improves the fill factor of the BHJ device to 0.61 without further tempering. The addition of nitrobenzene also increases the P3HT crystalline content, while increasing the onset temperature for melting of P3HT side chains and backbone. The melting temperature for PCBM is also higher with the nitrobenzene additive present. 相似文献
5.
6.
Self‐Assembled Quasi‐3D Nanocomposite: A Novel p‐Type Hole Transport Layer for High Performance Inverted Organic Solar Cells 下载免费PDF全文
Jiaqi Cheng Hong Zhang Yong Zhao Jian Mao Can Li Shaoqing Zhang Kam Sing Wong Jianhui Hou Wallace C. H. Choy 《Advanced functional materials》2018,28(15)
Hole transport layer (HTL) plays a critical role for achieving high performance solution‐processed optoelectronics including organic electronics. For organic solar cells (OSCs), the inverted structure has been widely adopted to achieve prolonged stability. However, there are limited studies of p‐type effective HTL on top of the organic active layer (hereafter named as top HTL) for inverted OSCs. Currently, p‐type top HTLs are mainly 2D materials, which have an intrinsic vertical conduction limitation and are too thin to function as practical HTL for large area optoelectronic applications. In the present study, a novel self‐assembled quasi‐3D nanocomposite is demonstrated as a p‐type top HTL. Remarkably, the novel HTL achieves ≈15 times enhanced conductivity and ≈16 times extended thickness compared to the 2D counterpart. By applying this novel HTL in inverted OSCs covering fullerene and non‐fullerene systems, device performance is significantly improved. The champion power conversion efficiency reaches 12.13%, which is the highest reported performance of solution processed HTL based inverted OSCs. Furthermore, the stability of OSCs is dramatically enhanced compared with conventional devices. The work contributes to not only evolving the highly stable and large scale OSCs for practical applications but also diversifying the strategies to improve device performance. 相似文献
7.
Optimization and Analysis of Conjugated Polymer Side Chains for High‐Performance Organic Photovoltaic Cells 下载免费PDF全文
Ji‐Hoon Kim Sebastian Wood Jong Baek Park Jessica Wade Myungkwan Song Sung Cheol Yoon In Hwan Jung Ji‐Seon Kim Do‐Hoon Hwang 《Advanced functional materials》2016,26(10):1517-1525
Optimization and analysis of conjugated polymer side chains for high‐performance organic photovoltaic cells (OPVs) reveal a critical relationship between the chemical structure of the side chains and photovoltaic properties of polymer‐based bulk heterojunction OPVs. In particular, the impact of the alkyl side chain length on the π‐bridging (thienothiophene, TT) unit is considered by designing and synthesizing a series of benzodithiophene derivatives (BDT(T)) and thieno[3,2‐b]thiophene‐π‐bridged thieno[3,4‐c]pyrrole‐4,6(5H)‐dione (ttTPD) alternating copolymers, PBDT(T)‐(R2)ttTPD, with alkyl chains of varying length on the TT unit. Using a combination of 2D X‐ray diffraction, Raman spectroscopy, and electrical device characterization, it is elucidated in detail how these subtle changes to the chemical structure affect the molecular conformation, thin film molecular packing, blend film morphology, optoelectronic properties, and hence overall photovoltaic performance. For copolymers employing both the alkoxy or alkylthienyl‐substituted BDT motifs, it is found that octyl side chains on TT unit yield the maximum degree of molecular backbone coplanarity and result in the highest quality of molecular packing and optimized hole mobility. Inverted devices fabricated using this PBDTT‐8ttTPD: polymer/[6,6]‐phenyl‐C71‐butylic acid methyl ester active layer show a maximum power conversion efficiency (PCE) of 8.7% with large area cells (0.64 cm2) maintaining a PCE of 7.5%. 相似文献
8.
Conjugated Polymers: Linking Group Influences Charge Separation and Recombination in All‐Conjugated Block Copolymer Photovoltaics (Adv. Funct. Mater. 35/2015) 下载免费PDF全文
Jorge W. Mok Yen‐Hao Lin Kevin G. Yager Aditya D. Mohite Wanyi Nie Seth B. Darling Youngmin Lee Enrique Gomez David Gosztola Richard D. Schaller Rafael Verduzco 《Advanced functional materials》2015,25(35):5569-5569
9.
Haiyang Chen Yu Zhan Guiying Xu Weijie Chen Shuhui Wang Moyao Zhang Yaowen Li Yongfang Li 《Advanced functional materials》2020,30(36)
The power conversion efficiency (PCE) of planar p–i–n perovskite solar cells (pero‐SCs) is commonly lower than that of the n–i–p pero‐SCs, due to the severe nonradiative recombination stemming from the more p‐type perovskite with prevailing electron traps. Here, two n‐type organic molecules, DMBI‐2‐Th and DMBI‐2‐Th‐I, with hydrogen‐transfer properties for the doping of bulk perovskite aimed at regulating its electronic states are synthesized. The generated radicals in these n‐type dopants with high‐lying singly occupied molecular orbitals enable easy transfer of the thermally activated electrons to the MAPbI3 perovskite for the realization of n‐doped perovskites. The n‐doping degree could be further enhanced by using the iodine ionized dopant DMBI‐2‐Th‐I. The doping effect could reduce the electron trap density, increase the electron concentration of the bulk perovskite, and simultaneously improve the surface electronic contact. When the DMBI‐2‐Th‐I‐doped perovskite is used in planar p–i–n pero‐SCs, the nonradiative recombination is significantly suppressed. As a result, the photovoltaic performance improved significantly, as evidenced by an excellent PCE of 20.90% and a robust ambient stability even under high relative humidity. To the best of the knowledge, this work represents the first example where organic n‐type dopants are used to tune the electronic states of a bulk perovskite film for efficient planar p–i–n pero‐SCs. 相似文献
10.
This study addresses two key issues, stability and efficiency, of polymer solar cells based on blended poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) by demonstrating a film‐forming process that involves low‐temperature drying (?5 °C) and subsequent annealing of the active layer. The low‐temperature process achieves 4.70% power conversion efficiency (PCE) and ~1250 h storage half‐life at 65 °C, which are significant improvements over the 3.39% PCE and ~143 h half‐life of the regular room‐temperature process. The improvements are attributed to the enhanced nucleation of P3HT crystallites as well as the minimized separation of the P3HT and PCBM phases at the low drying temperature, which upon post‐drying annealing results in a morphology consisting of small PCBM‐rich domains interspersed within a densely interconnected P3HT crystal network. This morphology provides ample bulk‐heterojunction area for charge generation while allowing for facile charge transport; moreover, the P3HT crystal network serves as an immobile frame at heating temperatures less than the melting point (Tm) of P3HT, thus preventing PCBM/P3HT phase separation and the corresponding device degradation. 相似文献
11.
Svetlana S. van Bavel Maik Bärenklau Gijsbertus de With Harald Hoppe Joachim Loos 《Advanced functional materials》2010,20(9):1458-1463
The performance of polymer solar cells (PSC) strongly depends on the 3D morphological organization of the donor and acceptor compounds within the bulk heterojunction active layer. The technique of electron tomography is a powerful tool for studying 3D morphology of the layers composed of poly(3‐hexylthiophene) (P3HT) and a fullerene derivative ([6,6]‐phenyl‐C61‐butyric acid methyl ester; PCBM), especially to quantify the amount and distribution of fibrillar P3HT nanocrystals throughout the volume of the active layer. In this study, electron tomography is used to characterize P3HT/PCBM layers with different blend compositions, both before and after thermal annealing. The power conversion efficiency of the corresponding PSCs is strongly dependent on the overall crystallinity of P3HT and the way P3HT crystals are distributed throughout the thickness of the active layer. 相似文献
12.
Ning Cai Jing Zhang Mingfei Xu Min Zhang Peng Wang 《Advanced functional materials》2013,23(28):3539-3547
The judicious design of 3D giant organic dye molecules to enable the formation of a porous photoactive layer on the surface of titania is one of the viable tactics to abate the adverse interfacial charge recombination in dye‐sensitized solar cells (DSCs) employing outer‐sphere redox couples. Here 2′,6′‐bis(octyloxy)‐biphenyl substituted dithieno[3,2‐b:2′,3′‐d]pyrrole segment is constructed and employed as the π‐linker of a high molar absorption coefficient organic push‐pull dye. With respect to its congener possessing the hexyl substituted dithieno[3,2‐b:2′,3′‐d]pyrrole linker, the new dye can self‐assemble on the surface of titania to afford a porous organic coating, which effectively slow down the kinetics of charge recombination of titania electrons with both outer‐sphere tris(1,10‐phenanthroline)cobalt(III) ions and photooxidized dye molecules, improving the cell photovoltage. In addition, the diminishments of charge recombination via modulating the microstructure of interfacial functional zone can also overcompensate the disadvantageous impact of reduced light‐harvesting and evoke an enhanced photocurrent output, bringing forth an efficiency improvement from 7.5% to 9.3% at the 100 mW cm?2, simulated AM1.5 conditions. 相似文献
13.
Panagiotis E. Keivanidis Frédéric Laquai Ian A. Howard Richard H. Friend 《Advanced functional materials》2011,21(8):1355-1363
Herein, we address the reduction in the external quantum efficiency (EQE) of solution‐processed organic photodetectors caused by the room temperature phase demixing of components in the composite material of the photoactive layer. The reduction takes place under ambient conditions and after the completion of device fabrication. As a model system, we study photoactive blend films that consist of the electron acceptor N,N’‐bis(alkyl)‐3,4,9,10‐perylene tetracarboxylic diimide) (PDI) and the electron donor polymer poly(9,9’‐dioctylfluorene‐co‐benzothiadiazole) (F8BT). The ambient ageing of these photoactive layers is a consequence of the PDI component segregation; however, the final PDI domain size remains smaller than the resolution limit of optical microscopy. We find that the photophysical properties of the aged F8BT:PDI layer and the EQE of the aged device are significantly altered. The fabrication of F8BT:PDI layers from solvents of increasing boiling point allows for the spectroscopic monitoring of the ageing‐induced phase segregation (a‐PSG) process. For each solvent used, the extent of a‐PSG is correlated with the PDI dispersion in the F8BT matrix as received immediately after layer deposition. The tendency for room temperature phase demixing becomes stronger as PDI is more finely dispersed in the freshly spun F8BT:PDI layer. The evolution of the room temperature phase segregation of PDI has a negative impact on the photophysical processes that are essential for charge photogeneration in the F8BT:PDI photoactive layer. 相似文献
14.
Xing Yan David J. Poxson Jaehee Cho Roger E. Welser Ashok K. Sood Jong Kyu Kim E. Fred Schubert 《Advanced functional materials》2013,23(5):583-590
An optimized four‐layer tailored‐ and low‐refractive index anti‐reflection (AR) coating on an inverted metamorphic (IMM) triple‐junction solar cell device is demonstrated. Due to an excellent refractive index matching with the ambient air by using tailored‐ and low‐refractive index nanoporous SiO2 layers and owing to a multiple‐discrete‐layer design of the AR coating optimized by a genetic algorithm, such a four‐layer AR coating shows excellent broadband and omnidirectional AR characteristics and significantly enhances the omnidirectional photovoltaic performance of IMM solar cell devices. Comparing the photovoltaic performance of an IMM solar cell device with the four‐layer AR coating and an IMM solar cell with the conventional SiO2/TiO2 double layer AR coating, the four‐layer AR coating achieves an angle‐of‐incidence (AOI) averaged short‐circuit current density, JSC, enhancement of 34.4%, whereas the conventional double layer AR coating only achieves an AOI‐averaged JSC enhancement of 25.3%. The measured reflectance reduction and omnidirectional photovoltaic performance enhancement of the four‐layer AR coating are to our knowledge, the largest ever reported in the literature of solar cell devices. 相似文献
15.
Tuning the Molecular Weight of the Electron Accepting Polymer in All‐Polymer Solar Cells: Impact on Morphology and Charge Generation 下载免费PDF全文
Rukiya Matsidik Shyamal K. K. Prasad Luke A. Connal Amelia C. Y. Liu Lars Thomsen Justin M. Hodgkiss Christopher R. McNeill 《Advanced functional materials》2018,28(18)
Molecular weight is an important factor determining the morphology and performance of all‐polymer solar cells. Through the application of direct arylation polycondention, a series of batches of a fluorinated naphthalene diimide‐based acceptor polymer are prepared with molecular weight varying from Mn = 20 to 167 kDa. Used in conjunction with a common low bandgap donor polymer, the effect of acceptor molecular weight on solar cell performance, morphology, charge generation, and transport is explored. Increasing the molecular weight of the acceptor from Mn = 20 to 87 kDa is found to increase cell efficiency from 2.3% to 5.4% due to improved charge separation and transport. Further increasing the molecular weight to Mn = 167 kDa however is found to produce a drop in performance to 3% due to liquid–liquid phase separation which produces coarse domains, poor charge generation, and collection. In addition to device studies, a systematic investigation of the microstructure and photophysics of this system is presented using a combination of transmission electron microscopy, grazing‐incidence wide‐angle X‐ray scattering, near‐edge X‐ray absorption fine‐structure spectroscopy, photoluminescence quenching, and transient absorption spectroscopy to provide a comprehensive understanding of the interplay between morphology, photophysics, and photovoltaic performance. 相似文献
16.
Tiziano Agostinelli Samuele Lilliu John G. Labram Mariano Campoy‐Quiles Mark Hampton Ellis Pires Jonathan Rawle Oier Bikondoa Donal D. C. Bradley Thomas D. Anthopoulos Jenny Nelson J. Emyr Macdonald 《Advanced functional materials》2011,21(9):1701-1708
Crystallization and phase segregation during thermal annealing lead to the increase of power‐conversion efficiency in poly(3‐hexylthiophene) (P3HT):[6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) bulk‐heterojunction solar cells. An understanding of the length and time scale on which crystallization and phase segregation occur is important to improve control of the nanomorphology. Crystallization is monitored by means of grazing incidence X‐ray diffraction in real time during thermal annealing. Furthermore, the change in film density is monitored by means of ellipsometry and the evolution of carrier mobilities by means of field effect transistors, both during annealing. From the combination of such measurements with those of device performance as a function of annealing time, it is concluded that the evolution of microstructure involves two important time windows: i) A first one of about 5 minutes duration wherein crystallization of the polymer correlates with a major increase of photocurrent; ii) a second window of about 30 minutes during which the aggregation of PCBM continues, accompanied by an increase in the fill factor. 相似文献
17.
A Cross‐Linkable Donor Polymer as the Underlying Layer to Tune the Active Layer Morphology of Polymer Solar Cells 下载免费PDF全文
Bin Meng Zaiyu Wang Wei Ma Zhiyuan Xie Jun Liu Lixiang Wang 《Advanced functional materials》2016,26(2):226-232
For polymer solar cells (PSCs) with conventional configuration, the vertical composition profile of donor:acceptor in active layer is detrimental for charge carrier transporting/collection and leads to decreased device performance. A cross‐linkable donor polymer as the underlying morphology‐inducing layer (MIL) to tune the vertical composition distribution of donor:acceptor in the active layer for improved PSC device performance is reported. With poly(thieno[3,4‐b]‐thiophene/benzodithiophene):[6,6]‐phenyl C71‐butyric acid methyl ester (PTB7:PC71BM) as the active layer, the MIL material, PTB7‐TV , is developed by attaching cross‐linkable vinyl groups to the side chain of PTB7. PSC device with PTB7‐TV layer exhibits a power conversion efficiency (PCE) of 8.55% and short‐circuit current density (JSC) of 15.75 mA cm?2, in comparison to PCE of 7.41% and JSC of 13.73 mA cm?2 of the controlled device. The enhanced device performance is ascribed to the much improved vertical composition profile and reduced phase separation domain size in the active layer. These results demonstrate that cross‐linked MIL is an effective strategy to improve photovoltaic performance of conventional PSC devices. 相似文献
18.
The charge transport in pristine poly(3‐hexylthiophene) (P3HT) films and in photovoltaic blends of P3HT with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) is investigated to study the influence of charge‐carrier transport on photovoltaic efficiency. The field‐ and temperature dependence of the charge‐carrier mobility in P3HT of three different regioregularities, namely, regiorandom, regioregular with medium regioregularity, and regioregular with very high regioregularity are investigated by the time‐of‐flight technique. While medium and very high regioregularity polymers show the typical absorption features of ordered lamellar structures of P3HT in the solid state even without previous annealing, films of regiorandom P3HT are very disordered as indicated by their broad and featureless absorption. This structural difference in the solid state coincides with partially non‐dispersive transport and hole mobilities µh of around 10?4 and 10?5 cm2 V?1 s?1 for the high and medium regioregularity P3HT, respectively, and a slow and dispersive charge transport for the regiorandom P3HT. Upon blending the regioregular polymers with PCBM, the hole mobilities are typically reduced by one order of magnitude, but they do not significantly change upon additional post‐spincasting annealing. Only in the case of P3HT with high regioregularity are the electron mobilities similar to the hole mobilities and the charge transport is, thus, balanced. Nonetheless, devices prepared from both materials exhibit similar power conversion efficiencies of 2.5%, indicating that very high regioregularity may not substantially improve order and charge‐carrier transport in P3HT:PCBM and does not lead to significant improvements in the power‐conversion efficiency of photovoltaic devices. 相似文献
19.
Tao Liu Wei Gao Yilin Wang Tao Yang Ruijie Ma Guangye Zhang Cheng Zhong Wei Ma He Yan Chuluo Yang 《Advanced functional materials》2019,29(26)
2D conjugated side‐chain engineering is an effective strategy that is widely utilized to construct benzodithiophene‐based polymers. Herein, an unconjugated side‐chain strategy to design fused‐benzodithiophene‐based non‐fullerene small molecule acceptors (SMAs) via vertical aromatic side‐chain engineering on the ladder‐type core is employed. Three SMAs named BTTIC‐Th, BTTIC‐TT, and BTTIC‐Ph with thiophene, thieno[3,2‐b]thiophene, and benzene, respectively, as side chains, are designed and synthesized. Three SMAs exhibit similar absorption ranges but different lowest unoccupied molecular orbital (LUMO) energy levels due to the different strength of the δ‐inductive effect between vertical aromatic side chains and their electron‐rich core. Organic solar cells based on PBDB‐T:BTTIC‐TT achieve a power conversion efficiency (PCE) of 13.44%, which is higher than the PCE of devices based on PBDB‐T:BTTIC‐Th (12.91%) and PBDB‐T:BTTIC‐Ph (9.14%). The difference in device performance is investigated by electrical and morphological characterizations. A large domain size and different types of π–π stacking are found in the bulk heterojunction layer of PBDB‐T:BTTIC‐Ph blend film, which are detrimental to exciton dissociation and charge transport. Overall, it is demonstrated that when designing unconjugated side chains, thieno[3,2‐b]thiophene is superior to thiophene and benzene through its dual roles of promoting the LUMO energy level and optimizing the morphology. These results shed light on the side‐chain engineering of high‐performance non‐fullerene SMAs. 相似文献
20.
Difluorobenzothiadiazole‐Based Small‐Molecule Organic Solar Cells with 8.7% Efficiency by Tuning of π‐Conjugated Spacers and Solvent Vapor Annealing 下载免费PDF全文
Jin‐Liang Wang Fei Xiao Jun Yan Zhuo Wu Kai‐Kai Liu Zheng‐Feng Chang Ru‐Bo Zhang Hui Chen Hong‐Bin Wu Yong Cao 《Advanced functional materials》2016,26(11):1803-1812
The synthesis of a series of tetrafluorine‐substituted, wide‐bandgap, small molecules consisting of various π‐conjugated spacers (furan, thiophene, selenophene) between indacenodithiophene as the electron‐donating core and the electron‐deficient difluorobenzothiadiazole unit is reported and the effect of the π‐conjugated spacers on the photovoltaic properties is investigated. The alteration of the π‐conjugated spacer enables fine‐tuning of the photophysical properties and energy levels of the small molecules, and allows the adjustment of the charge‐transport properties, the morphology of the photoactive films, as well as their photovoltaic properties. Moreover, most of these devices exhibit superior device performances after CH2Cl2 solvent annealing than without annealing, with a high fill factor (0.70–0.75 for all cases). Notably, the devices based on the new molecule BIT4FTh (with thiophene as the spacer) show an outstanding PCE of 8.7% (with an impressive FF of 0.75), considering its wide‐bandgap (1.81 eV), which is among the highest efficiencies reported so far for small‐molecules‐based solar cells. The morphologies of the photoactive layers with/without CH2Cl2 solvent annealing are characterized by atomic force microscopy, transmission electron microscopy and two‐dimensional grazing incidence X‐ray diffraction analysis. The results reported here clearly indicate that highly efficient small‐molecules‐based solar cells can be achieved through rational design of their molecular structure and optimization of the phase‐separated morphology via an adapted solvent–vapor annealing process. 相似文献