首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrogen evolution reaction in an alkaline environment using a non‐precious catalyst with much greater efficiency represents a critical challenge in research. Here, a robust and highly active system for hydrogen evolution reaction in alkaline solution is reported by developing MoS2 nanosheet arrays vertically aligned on graphene‐mediated 3D Ni networks. The catalytic activity of the 3D MoS2 nanostructures is found to increase by 2 orders of magnitude as compared to the Ni networks without MoS2. The MoS2 nanosheets vertically grow on the surface of graphene by employing tetrakis(diethylaminodithiocarbomato)molybdate(IV) as the molybdenum and sulfur source in a chemical vapor deposition process. The few‐layer MoS2 nanosheets on 3D graphene/nickel structure can maximize the exposure of their edge sites at the atomic scale and present a superior catalysis activity for hydrogen production. In addition, the backbone structure facilitates as an excellent electrode for charge transport. This precious‐metal‐free and highly efficient active system enables prospective opportunities for using alkaline solution in industrial applications.  相似文献   

2.
Developing low‐cost non‐precious metal catalysts for high‐performance oxygen reduction reaction (ORR) is highly desirable. Here a facile, in situ template synthesis of a MnO‐containing mesoporous nitrogen‐doped carbon (m‐N‐C) nanocomposite and its high electrocatalytic activity for a four‐electron ORR in alkaline solution are reported. The synthesis of the MnO‐m‐N‐C nanocomposite involves one‐pot hydrothermal synthesis of Mn3O4@polyaniline core/shell nanoparticles from a mixture containing aniline, Mn(NO3)2, and KMnO4, followed by heat treatment to produce N‐doped ultrathin graphitic carbon coated MnO hybrids and partial acid leaching of MnO. The as‐prepared MnO‐m‐N‐C composite catalyst exhibits high electrocatalytic activity and dominant four‐electron oxygen reduction pathway in 0.1 M KOH aqueous solution due to the synergetic effect between MnO and m‐N‐C. The pristine MnO shows little electrocatalytic activity and m‐N‐C alone exhibits a dominant two‐electron process for ORR. The MnO‐m‐N‐C composite catalyst also exhibits superior stability and methanol tolerance to a commercial Pt/C catalyst, making the composite a promising cathode catalyst for alkaline methanol fuel cell applications. The synergetic effect between MnO and N‐doped carbon described provides a new route to design advanced catalysts for energy conversion.  相似文献   

3.
Dehydrogenation of formic acid (FA) is a promising alternative to fossil fuels, to provide clean energy for the future energy economy. The synthesis of highly active catalysts for FA dehydrogenation at room temperature has attracted a lot of attention. Herein, for the first time, highly active aurum–palladium nanoparticles (AuPd NPs) immobilized on nitrogen (N)‐doped porous carbon are fabricated through a phosphate‐mediation approach. The N‐doped carbon anchored with phosphate, which can be removed in alkaline solution during the reduction process of metal ions, shows an enhanced performance of absorbing and dispersion of both Au and Pd ions, which is a key to the synthesis of highly dispersed ultrafine AuPd NPs. The as‐prepared catalyst (designated as Au2Pd3@(P)N‐C) exhibits an extraordinarily high turnover frequency of 5400 h?1 and a 100% H2 selectivity for FA dehydrogenation at 30 °C. This phosphate‐mediation approach provides a new way to fabricate highly active metal NPs for catalytic application, pushing heterogeneous catalysts forward for practical usage in energy storage and conversion.  相似文献   

4.
Developing cost‐effective and efficient electrocatalysts for oxygen evolution reaction (OER) is of paramount importance for the storage of renewable energies. Perovskite oxides serve as attractive candidates given their structural and compositional flexibility in addition to high intrinsic catalytic activity. In a departure from the conventional doping approach utilizing metal elements only, here it is shown that non‐metal element doping provides an another attractive avenue to optimize the structure stability and OER performance of perovskite oxides. This is exemplified by a novel tetragonal perovskite developed in this work, i.e., SrCo0.95P0.05O3– δ (SCP) which features higher electrical conductivity and larger amount of O2 2?/O? species relative to the non‐doped parent SrCoO3– δ (SC), and thus shows improved OER activity. Also, the performance of SCP compares favorably to that of well‐developed perovskite oxides reported. More importantly, an unusual activation process with enhanced activity during accelerated durability test (ADT) is observed for SCP, whereas SC delivers deactivation for the OER. Such an activation phenomenon for SCP may be primarily attributed to the in situ formation of active A‐site‐deficient structure on the surface and the increased electrochemical surface area during ADT. The concept presented here bolsters the prospect to develop a viable alternative to precious metal‐based catalysts.  相似文献   

5.
Layered H2Ti6O13‐nanowires are prepared using a facile hydrothermal method and their Li‐storage behavior is investigated in non‐aqueous electrolyte. The achieved results demonstrate the pseudocapacitive characteristic of Li‐storage in the layered H2Ti6O13‐nanowires, which is because of the typical nanosize and expanded interlayer space. The as‐prepared H2Ti6O13‐nanowires have a high capacitance of 828 F g?1 within the potential window from 2.0 to 1.0 V (vs. Li/Li+). An asymmetric supercapacitor with high energy density is developed successfully using H2Ti6O13‐nanowires as a negative electrode and ordered mesoporous carbon (CMK‐3) as a positive electrode in organic electrolyte. The asymmetric supercapacitor can be cycled reversibly in the voltage range of 1 to 3.5 V and exhibits maximum energy density of 90 Wh kg?1, which is calculated based on the mass of electrode active materials. This achieved energy density is much higher than previous reports. Additionally, H2Ti6O13//CMK‐3 asymmetric supercapacitor displays the highest average power density of 11 000 W kg?1. These results indicate that the H2Ti6O13//CMK‐3 asymmetric supercapacitor should be a promising device for fast energy storage.  相似文献   

6.
Making highly efficient catalysts for an overall ?water splitting reaction is vitally important to bring solar/electrical‐to‐hydrogen energy conversion processes into reality. Herein, the synthesis of ultrathin nanosheet‐based, hollow MoOx/Ni3S2 composite microsphere catalysts on nickel foam, using ammonium molybdate as a precursor and the triblock copolymer pluronic P123 as a structure‐directing agent is reported. It is also shown that the resulting materials can serve as bifunctional, non‐noble metal electrocatalysts with high activity and stability for the hydrogen evolution reaction (HER) as well as the oxygen evolution reaction (OER). Thanks to their unique structural features, the materials give an impressive water‐splitting current density of 10 mA cm?2 at ≈1.45 V with remarkable durability for >100 h when used as catalysts both at the cathode and the anode sides of an alkaline electrolyzer. This performance for an overall water splitting reaction is better than even those obtained with an electrolyzer consisting of noble metal‐based Pt/C and IrOx/C catalytic couple—the benchmark catalysts for HER and OER, respectively.  相似文献   

7.
Non‐precious metal catalysts of the oxygen reduction reaction are highly favored for use in polymer electrolyte fuel cells (PEFC) because of their relatively low cost. Here, a new carbon‐black‐supported pyrolyzed Co‐corrole (py‐Co‐corrole/C) catalyst of the oxygen reduction reaction (ORR) in a PEFC cathode is demonstrated to have high catalytic performance. The py‐Co‐corrole/C at 700 °C exhibits optimized ORR activity and participates in a direct four‐electron reduction pathway for the reduction of O2 to H2O. The H2‐O2 PEFC test of py‐Co‐corrole/C in the cathode reveals a maximum power density of 275 mW cm?2, which yields a higher performance and a lower Co loading than previous studies of Co‐based catalysts for PEFCs. The enhancement of the ORR activity of py‐Co‐corrole/C is attributable to the four‐coordinated Co‐corrole structure and the oxidation state of the central cobalt.  相似文献   

8.
1D hierarchical porous nanocomposites with tailored chemical composition are gaining popularity in lithium‐ion batteries. Here, with core@shell Te@ZIF‐8 (Zn, Co) nanofibers as a starting point, rational designed porous Te@ZnCo2O4 nanocomposite has been fabricated by a simple morphology‐maintained and calcination‐induced oxidative decomposition process, with the purpose of simultaneously settling the pulverization and conductivity issues of transition metal oxides. This is the first time to integrate Te and ZnCo2O4 into one architecture at nanometer level. The Te@ZnCo2O4 nanofibers combine both advantages of Te such as excellent electrical conductivity and ZnCo2O4 with high capacity as well as take full use of their synergistic effect. With the favorable 1D porous structure and the unique composition, this novel Te@ZnCo2O4 nanofiber manifests strong ability to improve the lithium storage performances with a high specific capacity of 1364 mA h g?1 in the initial discharge and a reversible capacity of 956 mA h g?1 after 100 cycles. When increased the current density to 2000 mA g?1, the capacity still remains as 307 mA h g?1, demonstrating superior rate capability. Furthermore, this general strategy can be extended to construct other core@shell Te@MOFs composites.  相似文献   

9.
Rational design of non‐noble metal catalysts with robust and durable electrocatalytic activity for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) is extremely important for renewable energy conversion and storage, regenerative fuel cells, rechargeable metal–air batteries, water splitting etc. In this work, a unique hybrid material consisting of Fe3C and Co nanoparticles encapsulated in a nanoporous hierarchical structure of N‐doped carbon (Fe3C‐Co/NC) is fabricated for the first time via a facile template‐removal method. Such an ingenious structure shows great features: the marriage of 1D carbon nanotubes and 2D carbon nanosheets, abundant active sites resulting from various active species of Fe3C, Co, and NC, mesoporous carbon structure, and intimate integration among Fe3C, Co, and NC. As a multifunctional electrocatalyst, the Fe3C‐Co/NC hybrid exhibits excellent performance for ORR, OER, and HER, outperforming most of reported triple functional electrocatalysts. This study provides a new perspective to construct multifunctional catalysts with well‐designed structure and superior performance for clean energy conversion technologies.  相似文献   

10.
The simultaneous and efficient evolution of hydrogen and oxygen with earth‐abundant, highly active, and robust bifunctional electrocatalysts is a significant concern in water splitting. Herein, non‐noble metal‐based Ni–Co–S bifunctional catalysts with tunable stoichiometry and morphology are realized. The engineering of electronic structure and subsequent morphological design synergistically contributes to significantly elevated electrocatalytic performance. Stable overpotentials (η10) of 243 mV (vs reversible hydrogen electrode) for oxygen evolution reaction (OER) and 80 mV for hydrogen evolution reaction (HER), as well as Tafel slopes of 54.9 mV dec?1 for OER and 58.5 mV dec?1 for HER, are demonstrated. In addition, density functional theory calculations are performed to determine the optimal electronic structure via the electron density differences to verify the enhanced OER activity is related to the Co top site on the (110) surface. Moreover, the tandem bifunctional NiCo2S4 exhibit a required voltage of 1.58 V (J = 10 mA cm?2) for simultaneous OER and HER, and no obvious performance decay is observed after 72 h. When integrated with a GaAs solar cell, the resulting photoassisted water splitting electrolyzer shows a certified solar‐to‐hydrogen efficiency of up to 18.01%, further demonstrating the feasibility of engineering protocols and the promising potential of bifunctional NiCo2S4 for large‐scale overall water splitting.  相似文献   

11.
Cryoadsorption is a promising method of enhancing gravimetric and volumetric onboard H2 storage capacity for future transportation needs. Inexpensive carbide‐derived carbons (CDCs), produced by chlorination of metal carbides, have up to 80 % open‐pore volume with tunable pore size and specific surface area (SSA). Tuning the carbon structure and pore size with high sensitivity by using different starting carbides and chlorination temperatures allows rational design of carbon materials with enhanced C–H2 interaction and thus increased H2 storage capacity. A systematic experimental investigation of a large number of CDCs with controlled pore size distributions and SSAs shows how smaller pores increase both the heat of adsorption and the total volume of adsorbed H2. It has been demonstrated that increasing the average heat of H2 adsorption above 6.6 kJ mol–1 substantially enhances H2 uptake at 1 atm (1 atm = 101 325 Pa) and –196 °C. The heats of adsorption up to 11 kJ mol–1 exceed values reported for metal–organic framework compounds and carbon nanotubes.  相似文献   

12.
Electrocatalytic nitrogen reduction reaction (NRR) and hydrogen evolution reaction (HER) are intriguing approaches to nitrogen fixation and hydrogen production under ambient conditions, given the need to discover efficient and stable catalysts to light up the “green chemistry” future. However, bottlenecks are often found during N2/H2O activation, the very first step of NRR/HER, due to energetic electron injection from the surface of electrocatalysts. It is reported that the bottlenecks for both NRR and HER can be tackled by engineering the energy level via low‐valent transition‐metal doping, simultaneously, where rhenium disulfide (ReS2) is employed as a model platform to prove the concept. The doped low‐valent transition‐metal domains (e.g., Fe, Co, Ni, Cu, Zn) in ReS2 provide more active sites for N2/H2O chemisorption and electron transfer, not only weakening the N?N/O? H bonds for easier dissociation through proton coupling, but also elevating d‐band center toward the Fermi level with more electron energy for N2/H2O reduction. As a result, it is found that iron‐doped ReS2 nanosheets wrapped nitrogen‐doped carbon nanofiber (Fe‐ReS2@N‐CNF) catalyst exhibits superior electrochemical activity with eightfold higher ammonia production yield of 80.4 µg h?1 mg?1cat., and lower onset overpotential of 146 mV and Tafel slope of 63 mV dec?1, when comparing with the pristine ReS2.  相似文献   

13.
Development of electrocatalysts for hydrogen evolution reaction (HER) with low overpotential and robust stability remains as one of the most serious challenges for energy conversion. Herein, a serviceable and highly active HER electrocatalyst with multilevel porous structure (Co‐Co2P nanoparticles@N, P doped carbon/reduced graphene oxides (Co‐Co2P@NPC/rGO)) is synthesized by Saccharomycete cells as template to adsorb metal ions and graphene nanosheets as separating agent to prevent aggregation, which is composed of Co‐Co2P nanoparticles with size of ≈104.7 nm embedded into carbonized Saccharomycete cells. The Saccharomycete cells provide not only carbon source to produce carbon shells, but also phosphorus source to prepare metal phosphides. In order to realize the practicability and permanent stability, the binderless and 3D electrodes composed of obtained Co‐Co2P@NPC/rGO powder are constructed, which possess a low overpotential of 61.5 mV (achieve 10 mA cm?2) and the high current density with extraordinary catalytic stability (1000 mA cm?2 for 20 h) in 0.5 m H2SO4. The preparation process is appropriate for synthesizing various metal or metal phosphide@carbon electrocatalysts. This work may provide a biological template method for rational design and fabrication of various metals or metal compounds@carbon 3D electrodes with promising applications in energy conversion and storage.  相似文献   

14.
Development of highly efficient and low‐cost multifunctional electrocatalysts for the oxygen evolution reaction (OER), the oxygen reduction reaction (ORR), and the hydrogen evolution reaction is urgently required for energy storage and conversion applications, such as in Zn–air batteries and water splitting to replace very expansive noble metal catalysts. Here, the new core–shell NiFe@N‐graphite electrocatalysts with excellent electrocatalytic activity and stability toward OER and ORR are reported and the Ni0.5Fe0.5@N‐graphite electrocatalyst is applied as the air electrode in Zn–air batteries. The respective liquid Zn–air battery shows a large open‐circuit potential of 1.482 V and a small charge–discharge voltage gap of 0.12 V at 10 mA cm−2, together with excellent cycling stability even after 40 h at 20 mA cm−2. Interestingly, the all‐solid‐like Zn–air battery thus derived shows a highly desired mechanical flexibility, whereby little change is observed in the voltage when bent into different angles. Using the same Ni0.5Fe0.5@N‐graphite electrode, a self‐driven water‐splitting device, which is powered by two Zn–air batteries in‐series, is constructed. The present study opens a new opportunity for the rational design of metal@N‐graphite‐based catalysts of core–shell structures for electrochemical catalysts and renewable energy applications.  相似文献   

15.
Tungsten oxide nanostructures functionalized with gold or platinum NPs are synthesized and integrated, using a single‐step method via aerosol‐assisted chemical vapour deposition, onto micro‐electromechanical system (MEMS)‐based gas‐sensor platforms. This co‐deposition method is demonstrated to be an effective route to incorporate metal nanoparticles (NP) or combinations of metal NPs into nanostructured materials, resulting in an attractive way of tuning functionality in metal oxides (MOX). The results show variations in electronic and sensing properties of tungsten oxide according to the metal NPs introduced, which are used to discriminate effectively analytes (C2H5OH, H2, and CO) that are present in proton‐exchange fuel cells. Improved sensing characteristics, in particular to H2, are observed at 250 °C with Pt‐functionalized tungsten oxide films, whereas non‐functionalized tungsten oxide films show responses to low concentrations of CO at low temperatures. Differences in the sensing characteristics of these films are attributed to the different reactivities of metal NPs (Au and Pt), and to the degree of electronic interaction at the MOX/metal NP interface. The method presented in this work has advantages over other methods of integrating nanomaterials and devices, of having fewer processing steps, relatively low processing temperature, and no requirement for substrate pre‐treatment.  相似文献   

16.
Designing a facile strategy to access active and atomically dispersed metallic catalysts are highly challenging for single atom catalysts (SACs). Herein, a simple and fast approach is demonstrated to construct Pt catalysts with single atoms in large quantity via ball milling Pt precursor and N‐doped carbon support (K2PtCl4@NC‐M; M denotes ball‐milling). The as‐prepared K2PtCl4@NC‐M only requires a low overpotential of 11 mV and exhibits 17‐fold enhanced mass activity for the electrochemical hydrogen evolution compared to commercial 20 wt% Pt/C. The superior hydrogen evolution reaction (HER) catalytic activity of K2PtCl4@NC‐M can be attributed to the generation of Pt single atoms, which improves the utilization efficiency of Pt atoms and the introduction of Pt‐N2C2 active sites with near‐zero hydrogen adsorption energy. This viable ball milling method is found to be universally applicable to the fabrication of other single metal atoms, for example, rhodium and ruthenium (such as Mt‐N2C2, where Mt denotes single metal atom). This strategy also provides a promising and practical avenue toward large‐scale energy storage and conversion application.  相似文献   

17.
Hydrogen adsorption in two different metal–organic frameworks (MOFs), MOF‐5 and Cu‐BTC (BTC: benzene‐1,3,5‐tricarboxylate), with Zn2+ and Cu2+ as central metal ions, respectively, is investigated at temperatures ranging from 77 K to room temperature. The process responsible for hydrogen storage in these MOFs is pure physical adsorption with a heat of adsorption of approximately –4 kJ mol–1. With a saturation value of 5.1 wt.‐% for the hydrogen uptake at high pressures and 77 K, MOF‐5 shows the highest storage capacity ever reported for crystalline microporous materials. However, at low pressures Cu‐BTC shows a higher hydrogen uptake than MOF‐5, making Cu‐based MOFs more promising candidates for potential storage materials. Furthermore, the hydrogen uptake is correlated with the specific surface area for crystalline microporous materials, as shown for MOFs and zeolites.  相似文献   

18.
Here, we briefly review recent advances in H2 storage technologies relying on mixed proton–hydride and destabilized hydride materials. We establish a general relationship across different materials: the higher the effective H content, the higher the temperatures needed to completely desorb H2. Nevertheless, several systems show promising thermodynamics for H2 desorption; however, the desorption kinetics still needs to be improved by the use of appropriate catalysts. Prompted by the importance of heterolytically splitting stable dihydrogen molecules for proton–hydride technologies, we attempt to theoretically design novel H2 transfer catalysts. We focus mainly on M4Nm4H8 catalysts (M = V, Ti, Zr, Hf, and Nm = Si, C, B, N), which should be able to preserve their functionality in the strongly reducing environment of a H2 storage system. We are able to determine the energy of H2 detachment from these molecules, as well as the associated energy barriers. In order to optimize the properties of the catalysts, we use isoelectronic atom‐by‐atom substitutions, vary the valence electron count, and borrow the concept of near‐surface alloys from extended solids and apply it to molecular systems. We are able to obtain control over the enthalpy and electronic barriers for H2 detachment. Molecules with the coordinatively unsaturated > Ti?Si < unit exhibit particularly favorable thermodynamics and show unusually small electronic barriers for H2 detachment (> 0.27 eV) and attachment (> 0.07 eV). These and homologous ZrSi frameworks may serve as novel H2 transfer catalysts for use with emerging lightweight hydrogen storage materials holding 5.0–10.4 wt % hydrogen, such as Li2NH, Li2Mg(NH)2, Mg2Si, and LiH/MgB2 (discharged forms). Catalytic properties are also anticipated for appropriate defects on the surfaces and crystal edges of solid Ti and Zr silicides, and for Ti?Si ad‐units chemisorbed on other support materials.  相似文献   

19.
The development of cost‐effective and high‐performance electrocatalysts for the hydrogen evolution reaction (HER) is one critical step toward successful transition into a sustainable green energy era. Different from previous design strategies based on single parameter, here the necessary and sufficient conditions are proposed to develop bulk non‐noble metal oxides which are generally considered inactive toward HER in alkaline solutions: i) multiple active sites for different reaction intermediates and ii) a short reaction path created by ordered distribution and appropriate numbers of these active sites. Computational studies predict that a synergistic interplay between the ordered oxygen vacancies (at pyramidal high‐spin Co3+ sites) and the O 2p ligand holes (OLH; at metallic octahedral intermediate‐spin Co4+ sites) in RBaCo2O5.5+δ (δ = 1/4; R = lanthanides) can produce a near‐ideal HER reaction path to adsorb H2O and release H2, respectively. Experimentally, the as‐synthesized (Gd0.5La0.5)BaCo2O5.75 outperforms the state‐of‐the‐art Pt/C catalyst in many aspects. The proof‐of‐concept results reveal that the simultaneous possession of ordered oxygen vacancies and an appropriate number of OLH can realize a near‐optimal synergistic catalytic effect, which is pivotal for rational design of oxygen‐containing materials.  相似文献   

20.
In this work, the synthesis of high‐performance, metal ion‐imprinted, mesoporous carbon electrocatalysts for hydrazine oxidation reaction (HzOR) using casein or a family of phosphoproteins derived from cow's milk as a precursor is shown. The synthesis is made possible by mixing trace amounts of non‐noble metal ions (Fe3+ or Co2+) with casein and then producing different metal ions‐functionalized casein intermediates, which upon carbonization, followed by acid treatment, lead to metal ion‐imprinted catalytically active sites on the materials. The materials effectively electrocatalyze HzOR with low overpotentials at neutral pH and exhibit among the highest electrocatalytic performances ever reported for carbon catalysts. Their catalytic activities are also better than the corresponding control material, synthesized by carbonization of pure casein and other materials previously reported for HzOR. This work demonstrates a novel synthetic route that transforms an inexpensive protein to highly active carbon‐based electrocatalysts by modifying its surfaces with trace amounts of non‐noble metals. The types of metal ions employed in the synthesis are found to dictate the electrocatalytic activities of the materials. Notably, Fe3+ is found to be more effective than Co2+ in helping the conversion of casein into more electrocatalytically active carbon materials for HzOR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号