首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A self‐assembled three phase epitaxial nanocomposite film is grown consisting of ≈3 nm diameter fcc metallic Cu nanorods within square prismatic SrO rocksalt nanopillars in a Sr(Ti,Cu)O3‐δ perovskite matrix. Each phase has an epitaxial relation to the others. The core–shell‐matrix structures are grown on SrTiO3 substrates and can also be integrated onto Si using a thin SrTiO3 buffer. The structure is made by pulsed laser deposition in vacuum from a SrTi0.75Cu0.25O3 target, and formed as a result of the limited solubility of Cu in the perovskite matrix. Wet etching removes the 3 nm diameter Cu nanowires leaving porous SrO pillars. The three‐phase nanocomposite film is used as a substrate for growing a second epitaxial nanocomposite consisting of CoFe2O4 spinel pillars in a BiFeO3 perovskite matrix, producing dramatic effects on the structure and magnetic properties of the CoFe2O4. This three‐phase vertical nanocomposite provides a complement to the well‐known two‐phase nanocomposites, and may offer a combination of properties of three different materials as well as additional avenues for strain‐mediated coupling within a single film.  相似文献   

2.
There is great interest in self‐assembled oxide vertical nanocomposite films consisting of epitaxial spinel pillars in a single crystal perovskite matrix, due to their tunable electronic, magnetic, and multiferroic properties. Varying the composition or geometry of the pillars in the out‐of‐plane direction has not been previously reported but can provide new routes to tailoring their properties in three dimensions. In this work, ferrimagnetic epitaxial CoFe2O4, MgFe2O4, or NiFe2O4 spinel nanopillars with an out‐of‐plane modulation in their composition and shape are grown in a BiFeO3 matrix on a (001) SrTiO3 substrate using pulsed laser deposition. Changing the pillar composition during growth produces a homogeneous pillar composition due to cation interdiffusion, but this can be suppressed using a sufficiently thick blocking layer of BiFeO3 to produce bi‐pillar films containing for example a layer of magnetically hard CoFe2O4 pillars and a layer of magnetically soft MgFe2O4 pillars, which form in different locations. A thinner blocking layer enables contact between the top of the CoFe2O4 and the bottom of the MgFe2O4 which leads to correlated growth of the MgFe2O4 pillars directly above the CoFe2O4 pillars and provides a path for interdiffusion. The magnetic hysteresis of the nanocomposites is related to the pillar structure.  相似文献   

3.
In this study we report the epitaxial growth of BaTiO3 films on Si(0 0 1) substrate buffered by 5 nm-thick SrTiO3 layer using both MBE and PLD techniques. The BaTiO3 films demonstrate single crystalline, (0 0 1)-oriented texture and atomically flat surface on SrTiO3/Si template. The electrical characterizations of the BaTiO3 films using MFIS structures show that samples grown by MBE with limited oxygen pressure during the growth exhibit typical dielectric behavior despite post deposition annealing process employed. A ferroelectric BaTiO3 layer is obtained using PLD method, which permits much higher oxygen pressure. The C-V curve shows a memory window of 0.75 V which thus enable BaTiO3 possibly being applied to the non-volatile memory application.  相似文献   

4.
Multiferroic epitaxial Bi‐Fe‐O thin films of different thicknesses (15–500 nm) were grown on SrTiO3 (001) substrates by pulsed laser deposition under various oxygen partial pressures to investigate the microstructural evolution in the Bi‐Fe‐O system and its effect on misfit strain relaxation and on the magnetic properties of the films. Films grown at low oxygen partial pressure show the canted antiferromagnetic phase α‐Fe2O3 embedded in a matrix of BiFeO3. The ferromagnetic phase, γ‐Fe2O3 is found to precipitate inside the α‐Fe2O3 grains. The formation of these phases changes the magnetic properties of the films and the misfit strain relaxation mechanism. The multiphase films exhibit both highly strained and fully relaxed BiFeO3 regions in the same film. The magnetization in the multiphase Bi‐Fe‐O films is controlled by the presence of the γ‐Fe2O3 phase rather than heteroepitaxial strain as it is the case in pure single phase BiFeO3. Also, our results show that this unique accommodation of misfit strain by the formation of α‐Fe2O3 gives rise to significant enhancement of the piezo electric properties of BiFeO3.  相似文献   

5.
Unimorph cantilevers are made from 0.5BaTiO3‐0.5Sm2O3 (BTO‐SmO) self‐assembled vertical heteroepitaxial nanocomposite thin films, grown by PLD on (001) SrTiO3 single crystal substrates. The films remain piezoelectric up to at least 250 °C without losing any actuation. The longitudinal piezoelectric coefficient, d33, is ≈45 to 50 pm V?1 measured from room temperature to 250 °C. The transverse piezoelectric coefficient, d31, a key parameter of actuator performance, exceeds PZT (Pb1–xZrxTiO3) films at >200 pm V?1. Since the d31 coefficient was found to be positive, this opens up exciting new applications opportunities. The possible reasons for d31 > 0 are discussed in the light of 3D strain control in the nanocomposites.  相似文献   

6.
Substrate clamping and inter‐domain pinning limit movement of non‐180° domain walls in ferroelectric epitaxial films thereby reducing the resulting piezoelectric response of ferroelectric layers. Our theoretical calculations and experimental studies of the epitaxial PbZrxTi1–xO3 films grown on single crystal SrTiO3 demonstrate that for film compositions near the morphotropic phase boundary it is possible to obtain mobile two‐domain architectures by selecting the appropriate substrate orientation. Transmission electron microscopy, X‐ray diffraction analysis, and piezoelectric force microscopy revealed that the PbZr0.52Ti0.48O3 films grown on (101) SrTiO3 substrates feature self‐assembled two‐domain structures, consisting of two tetragonal domain variants. For these films, the low‐field piezoelectric coefficient measured in the direction normal to the film surface (d33) is 200 pm V–1, which agrees well with the theoretical predictions. Under external AC electric fields of about 30 kV cm–1, the (101) films exhibit reversible longitudinal strains as high as 0.35 %, which correspond to the effective piezoelectric coefficients in the order of 1000 pm V–1 and can be explained by elastic softening of the PbZrxTi1–xO3 ferroelectrics near the morphotropic phase boundary.  相似文献   

7.
Hierarchical nanocomposites rationally designed in component and structure, are highly desirable for the development of lithium‐ion batteries, because they can take full advantages of different components and various structures to achieve superior electrochemical properties. Here, the branched nanocomposite with β‐MnO2 nanorods as the back‐bone and porous α‐Fe2O3 nanorods as the branches are synthesized by a high‐temperature annealing of FeOOH epitaxially grown on the β‐MnO2 nanorods. Since the β‐MnO2 nanorods grow along the four‐fold axis, the as‐produced branches of FeOOH and α‐Fe2O3 are aligned on their side in a nearly four‐fold symmetry. This synthetic process for the branched nanorods built by β‐MnO2/α‐Fe2O3 is characterized. The branched nanorods of β‐MnO2/α‐Fe2O3 present an excellent lithium‐storage performance. They exhibit a reversible specific capacity of 1028 mAh g?1 at a current density of 1000 mA g?1 up to 200 cycles, much higher than the building blocks alone. Even at 4000 mA g?1, the reversible capacity of the branched nanorods could be kept at 881 mAh g?1. The outstanding performances of the branched nanorods are attributed to the synergistic effect of different components and the hierarchical structure of the composite. The disclosure of the correlation between the electrochemical properties and the structure/component of the nanocomposites, would greatly benefit the rational design of the high‐performance nanocomposites for lithium ion batteries, in the future.  相似文献   

8.
Multilayered multiferroic nanocomposite films of Pb(Zr0.52Ti0.48)O3 (PZT) and Co0.9Zn0.1Fe2O4 (CZFO) are prepared on general Pt/Ti/SiO2/Si substrates via a simple solution‐processing method. Structural characterization by X‐ray diffraction and electron microscopy techniques reveals good surface and cross‐sectional morphologies of these multilayered thin films. In particular, at room temperature strong ferroelectric and ferromagnetic responses are simultaneously observed in the multilayered thin films, depending on the deposited sequences and volume fractions of ferroelectric PZT phase and magnetic CZFO phase.  相似文献   

9.
Realization of ferroelectric (FE) devices based on the polarization effects of Pb(Zr0.52Ti0.48)O3 (PZT) has reinforced the investigation of this material in multiple dimensions and length scales. Multi‐level hierarchical nanostructure engineering in PZT thin films offer dual advantages of variable length‐scale and dimensionality. Here, the growth of hierarchically ordered PZT nano‐hetero­structures (Nhs) from PZT seed‐layer deposited on SrTiO3:Nb (100) substrates, using a physical/chemical combined methodology involving pulsed laser deposition (PLD) and hydrothermal processes, is reported. Systematic SEM, TEM, and Raman spectroscopy studies reveal mixed hetero‐ and homo‐epitaxial growth mechanism. In the final stage, 3D Nh units cross‐link and form a dense network‐like Nh PZT thin‐film. FE polarizations are measured without using any polymer fill‐layer which otherwise introduces huge dielectric losses and lowers the polarization values for a FE device. In benefit, well saturated and symmetric FE hysteresis loops are observed with high degree of squareness and a high remnant polarization (54 μC cm‐2 at a coercive field of 237 kV cm‐1). This work provides a pathway towards preparing hierarchical PZT Nhs offering coherent design of high‐performance FE capacitors for data storage technologies in future.  相似文献   

10.
Li4Ti5O12 typically shows a flat charge/discharge curve, which usually leads to difficulty in the voltage‐based state of charge (SOC) estimation. In this study, a facile quench‐assisted solid‐state method is used to prepare a highly crystalline binary Li4Ti5O12‐Li2Ti3O7 nanocomposite. While Li4Ti5O12 exhibits a sudden voltage rise/drop near the end of its charge/discharge curve, this binary nanocomposite has a tunable sloped voltage profile. The nanocomposite exhibits a unique lamellar morphology consisting of interconnected nanograins of ≈20 nm size with a hierarchical nanoporous structure, contributing to an enhanced rate capability with a capacity of 128 mA h g?1 at a high C‐rate of 10 C, and excellent cycling stability.  相似文献   

11.
This paper presents an efficient colloidal approach to process CoFe2O4 and SiO2 nanoparticles into thin films for magnetic and magneto‐optical applications. Thin films of varying CoFe2O4‐to‐SiO2 ratios (from 0 to 90 wt%) are obtained by sequential spin coating‐calcination cycles from the corresponding nanoparticle dispersions. Scanning electron microscopy analysis reveals a crack free and nanoparticulate structure of the sintered films with thicknesses of 480–1200 nm. Results from the optical characterization indicate a direct band gap ranging from 2.6 to 3.9 eV depending on the SiO2 content. Similarly, the refractive indices and absorption coefficients are tunable upon SiO2 incorporation. In‐plane measurements of the magnetic properties of the CoFe2O4 films reveal a superparamagnetic behavior with both Co2+ and Fe3+ contributing to the magnetism. Polar Kerr measurements show the presence of a spontaneous magnetization in the CoFe2O4 and CoFe2O4‐SiO2 (with SiO2 < 50 wt%) films, pointing to magnetic anisotropy perpendicular to the substrate. The origin of this effect is attributed to the constrained sintering conditions of the nano­particulate film and the negative magnetostriction of CoFe2O4.  相似文献   

12.
Crystalline LaAlO3 was grown by oxide molecular beam epitaxy (MBE) on Si (0 0 1) surfaces utilizing a 2 ML SrTiO3 buffer layer. This SrTiO3 buffer layer, also grown by oxide MBE, formed an abrupt interface with the silicon. No SiO2 layer was detectable at the oxide-silicon interface when studied by cross-sectional transmission electron microscopy. The crystalline quality of the LaAlO3 was assessed during and after growth by reflection high energy electron diffraction, indicating epitaxial growth with the LaAlO3 unit cell rotated 45° relative to the silicon unit cell. X-ray diffraction indicates a (0 0 1) oriented single-crystalline LaAlO3 film with a rocking curve of 0.15° and no secondary phases. The use of SrTiO3 buffer layers on silicon allows perovskite oxides which otherwise would be incompatible with silicon to be integrated onto a silicon platform.  相似文献   

13.
A new mechanism is proposed for the generation of self‐assembled nanodots at the surface of a film based on spontaneous outcropping of the secondary phase of a nanocomposite epitaxial film. Epitaxial self‐assembled Sr–La oxide insulating nanodots are formed through this mechanism at the surface of an epitaxial metallic ferromagnetic La0.7Sr0.3MnO3 (LSMO) film grown on SrTiO3 from chemical solutions. TEM analysis reveals that, underneath the La–Sr oxide (LSO) nanodots, the film switches from the compressive out‐of‐plane stress component to a tensile one. It is shown that the size and concentration of the nanodots can be tuned by means of growth kinetics and through modification of the La excess in the precursor chemical solution. The driving force for the nanodot formation can be attributed to a cooperative effect involving the minimization of the elastic strain energy and a thermodynamic instability of the LSMO phase against the formation of a Ruddelsden–Popper phase Sr3Mn4O7 embedded in the film, and LSO surface nanodots. The mechanism can be described as a generalization of the classical Stranski–Krastanov growth mode involving phase separation. LSO islands induce an isotropic strain to the LSMO film underneath the island which decreases the magnetoelastic contribution to the magnetic anisotropy.  相似文献   

14.
A tetragonal BiFeO3 phase with giant c/a of approximately 1.25 has been of great interest recently as it potentially possesses a giant polarization and much enhanced electromechanical response. This super‐tetragonal phase is known to be a stable phase only under high compressive strains of above approximately 4.5%, according to first principle calculations. However, in previous work, this super‐tetragonal BiFeO3 phase was obtained in films deposited at high growth rate on SrTiO3 substrates with compressive strain of only around 1.5%. By detailed structure analysis using high resolution synchrotron X‐ray diffraction, atomic force microscopy, and transmission electron microscopy, the parasitic β‐Bi2O3 phase is identified as the origin inducing the formation of super‐tetragonal BiFeO3 phase on SrTiO3 substrates. In addition, ab initio calculations also confirm that this super‐tetragonal phase is more stable than monoclinic phase when Bi2O3 is present. Using Bi2O3 as a buffer layer, an alternative route, not involving strain engineering, is proposed to stabilize this promising super‐tetragonal BiFeO3 phase at low growth rates.  相似文献   

15.
Silicon is one of the promising materials for solar water splitting and hydrogen production; however, it suffers from two key factors, including the large external potential required to drive water splitting reactions at its surface and its instability in the electrolyte. In this study, a successful fabrication of novel p‐Si/n‐SnO2/n‐Fe2O3 core/shell/shell nanowire (css‐NW) arrays, consisting of vertical Si NW cores coated with a thin SnO2 layer and a dense Fe2O3 nanocrystals (NCs) shell, and their application for significantly enhanced solar water reduction in a neutral medium is reported. The p‐Si/n‐SnO2/n‐Fe2O3 css‐NW structure is characterized in detail using scanning, transmission, and scanning transmission electron microscopes. The p‐Si/n‐SnO2/n‐Fe2O3 css‐NWs show considerably improved photocathodic performances, including higher photocurrent and lower photocathodic turn‐on potential, compared to the bare p‐Si NWs or p‐Si/n‐SnO2 core/shell NWs (cs‐NWs), due to increased optical absorption, enhanced charge separation, and improved gas evolution. As a result, photoactivity at 0 V versus reversible hydrogen electrode and a low onset potential in the neutral solution are achieved. Moreover, p‐Si/n‐SnO2/n‐Fe2O3 css‐NWs exhibit long‐term photoelectrochemical stability due to the Fe2O3 NCs shell well protection. These results reveal promising css‐NW photoelectrodes from cost‐effective materials by facile fabrication with simultaneously improved photocathodic performance and stability.  相似文献   

16.
Hysteresis is induced in paraelectric (Ba,Sr)TiO3 (BST) thin‐film capacitors by inserting an Al2O3 barrier layer of a few nanometers in thickness between the BST layer and the electrode. The observed hysteresis is explained by ambipolar charge carrier injection through the Al2O3 layer and charge storage at the BST/Al2O3 interface. The magnitude of the hysteresis can be directly adjusted by manipulating the thickness ratio between BST and Al2O3. Taking into account the low loss of (Ba,Sr)TiO3 capacitors, the observed switching and retention characteristics are suitable for application as non‐volatile programmable high‐frequency devices, e.g., in radio‐frequency identification.  相似文献   

17.
The magnitude and direction of the permanent electric polarization in the non‐crystalline, polar phase (termed quasi‐amorphous) of SrTiO3 in Si\SiO2\Me\SrTiO3\Me, (Me = Cr or W), Si\SrRuO3\SrTiO3, and Si\SrTiO3 layered structures were investigated. Three potential sources of the polarization which appears after the material is pulled through a temperature gradient were considered: a) contact potential difference; b) a flexoelectric effect due to a strain gradient caused by substrate curvature; and c) a flexoelectric effect due to the thermally induced strain gradient that develops while pulling through the steep temperature gradient. Measurements show that options a) and b) can be eliminated from consideration. In most cases studied in this (Si\SrTiO3, Si\SiO2\Me\SrTiO3\Me, M = Cr or W) and previous works (Si\BaTiO3, Si\BaZrO3), the top surface of the quasi‐amorphous phase acquires a negative charge upon heating. However, in Si\SrRuO3\SrTiO3 structures the top surface acquires a positive charge upon heating. On the basis of the difference in the measured expansion of the upper and lower surfaces of the SrTiO3 layer in the presence and absence of SrRuO3, we contend that the magnitude and direction of the pyroelectric effect are determined by the out‐of‐plane gradient of the in‐plane strain in the SrTiO3 layer while pulling through the temperature gradient.  相似文献   

18.
Multiferroic materials have driven significant research interest due to their promising technological potential. Developing new room‐temperature multiferroics and understanding their fundamental properties are important to reveal unanticipated physical phenomena and potential applications. Here, a new room temperature multiferroic nanocomposite comprised of an ordered ferrimagnetic spinel α‐LiFe5O8 (LFO) and a ferroelectric perovskite BiFeO3 (BFO) is presented. It is observed that lithium (Li)‐doping in BFO favors the formation of LFO spinel as a secondary phase during the synthesis of LixBi1?xFeO3 ceramics. Multimodal functional and chemical imaging methods are used to map the relationship between doping‐induced phase separation and local ferroic properties in both the BFO‐LFO composite ceramics and self‐assembled nanocomposite thin films. The energetics of phase separation in Li doped BFO and the formation of BFO‐LFO composites are supported by first principles calculations. These findings shed light on Li's role in the formation of a functionally important room temperature multiferroic and open a new approach in the synthesis of light element doped nanocomposites for future energy, sensing, and memory applications.  相似文献   

19.
Filler nanoparticles greatly enhance the performance of polymers and minimize filler content in the resulting nanocomposites. At the same time, they challenge the manufacturing of such nanocomposites by filler agglomeration and non‐uniform spatial distribution. Here, multifunctional nanocomposite films are made by capitalizing on flame‐synthesis of ceramic or metal filler nanoparticles followed by rapid, in situ deposition on sacrificial substrates, resulting in a filler film with controlled porosity. The polymer is then spin‐coated on the porous film that retained its stochastic but uniform structure, resulting in nanocomposites with homogeneous filler distribution and high filler‐loading. By sequential repetition of this procedure, sophisticated, multilayer, free‐standing, plasmonic‐ (Ag‐Fe2O3) and phosphorescent‐superparamagnetic (Y2O3:Eu3+‐ Fe2O3) actuators are made by precisely tuning the polymer thickness between each functional nanostructured layer. These actuators are quite flexible, have fast response times, and exhibit superior superparamagnetism due to their high filler content and homogeneous spatial distribution.  相似文献   

20.
In this work, a new facile and scalable strategy to effectively suppress the initial capacity fading of iron oxides is demonstrated by reacting with lithium borohydride (LiBH4) to form a B‐containing nanocomposite. Multielement, multiphase B‐containing iron oxide nanocomposites are successfully prepared by ball‐milling Fe2O3 with LiBH4, followed by a thermochemical reaction at 25–350 °C. The resulting products exhibit a remarkably superior electrochemical performance as anode materials for Li‐ion batteries (LIBs), including a high reversible capacity, good rate capability, and long cycling durability. When cycling is conducted at 100 mA g?1, the sample prepared from Fe2O3–0.2LiBH4 delivers an initial discharge capacity of 1387 mAh g?1. After 200 cycles, the reversible capacity remains at 1148 mAh g?1, which is significantly higher than that of pristine Fe2O3 (525 mAh g?1) and Fe3O4 (552 mAh g?1). At 2000 mA g?1, a reversible capacity as high as 660 mAh g?1 is obtained for the B‐containing nanocomposite. The remarkably improved electrochemical lithium storage performance can mainly be attributed to the enhanced surface reactivity, increased Li+ ion diffusivity, stabilized solid‐electrolyte interphase (SEI) film, and depressed particle pulverization and fracture, as measured by a series of compositional, structural, and electrochemical techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号