首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper attempts to report the preparation of TiO2–ZnO nanocomposite photoanode materials for dye-sensitized solar cells (DSSC) and analyse the efficiency of DSSC with natural dyes. The structural and optical characteristics of the composites were studied by transmission electron microscopy, X-ray diffraction, field effective scanning electron microscopy, energy dispersive spectrometry, photoluminescence and absorption spectroscopy. The synthesized nanocomposites formed on FTO substrates are applied as photoanode in a dye-sensitized solar cell (DSC). The natural dyes extracted from Beta vulgaris (Beetroot) and Syzygium cumini (black plum) were used in the fabrication of DSSC. The solar cells’ photovoltaic performance in terms of short-circuit current, open circuit voltage, fill factor and energy conversion efficiency was tested with photocurrent density–voltage measurements. The evolution of the solar cells parameters is explored as a function of the photoanode and type of dye used in DSSC fabrication.The obtained results show that the efficiency of DSSC significantly changes with the addition of ZnO to TiO2, while the Beta vulgaris dye has evidently shown higher photo sensitized performance compared to Syzygium cumini in the preparation of DSSC.  相似文献   

2.

Nanomaterials play important role in performance of dye-sensitized solar cells. In this paper, highly phase pure anatase TiO2 microspheres were synthesized using a low-cost hydrothermal route. Initially, X-ray diffraction studies and Raman spectroscopic analysis were carried out, and the formation of tetragonal structure of TiO2 with the anatase phase was confirmed. The UV–Vis DRS studies showed the excellent reflectance and optical band-gap energy of 3.29 eV. The well-interconnected spherical nanoparticles with different sizes were examined by Field Emission Scanning Electron Microscopic analysis. The fabricated dye-sensitized solar cell (DSSC) composed of prepared TiO2 microspheres as photoanode exhibited a higher power conversion efficiency (PCE) (η) of 5.4% as compared to commercial P25 with PCE of 3.6%. The higher Jsc (12.03 mA/cm2) in the fabricated DSSC due to efficient dye loading capacity and high light-scattering property was also observed.

  相似文献   

3.
Titania (TiO2) nanorods (NRs) and nanoparticles (NPs) were synthesized using oleic acid as a surfactant and employed as photoanodes for dye sensitized solar cell (DSSC) fabrication. The synthesized NRs and NPs were characterized using transmission electron microscopy and X-ray diffraction. The photovoltaic performances were compared between NRs, NPs, and their composites. The results showed that the power conversion efficiencies (η) of the composites depend on the relative compositions of NRs and NPs in photoanodes, reaching the greatest at 10% NR content. η of the pure NRs DSSC was lower than that of the NPs DSSC. Electrochemical impedance spectroscopy revealed that the highest η at 10% NRs is mainly due to reduced charge transport resistance at the TiO2/dye/electrolyte interface and electrolyte diffusion resistance, overcoming the reduction of the number of adsorbed dye molecules.  相似文献   

4.
This study investigates the applicability of n-type TiO2 and p-type NiO on the FTO-glass (Fluorine doped tin oxide, SnO2:F) substrate of the working electrode in a dye-sensitized solar cell (DSSC). The working electrode was designed and fabricated by depositing a film of TiO2/NiO composite particles, which were prepared by mixing the Ni powder with TiO2 particles using dry mixing method, on a FTO-glass substrate using a spin coating process. The working electrode was then immersed in the solution of N-719 (Ruthenium) dye at a temperature of 70 °C for 6 h. Moreover, a thin film of platinum (Pt) was deposited on the FTO-glass substrate of the counter electrode using an E-beam evaporator. Finally, the DSSC was assembled, and the short-circuit photocurrent, the open-circuit photovoltage and the power conversion efficiency of DSSC were measured using an IV measurement system. This study also examined the effects of the mass ratio of TiO2 to Ni and the number of coating of TiO2 particles (or TiO2/NiO composite particles) colloid on the power conversion efficiency of the DSSC. Most importantly, this study shows that the power conversion efficiency of the DSSC with TiO2/NiO composite particles (3.80%) substantially exceeds that of the conventional DSSC (3.27%) due to the effects of the NiO barrier and the n–p junction.  相似文献   

5.
《Advanced Powder Technology》2014,25(6):1679-1687
This paper outlines a new strategy to optimize the performance of electrodes in dye-sensitized solar cells (DSSCs), through the engineering of electronic structures in conjunction with the micro-structures of the devices. We propose a simple hydrolysis method for the fabrication of a family of quasi-core–shell TiO2 (hydrolysis)/PbS composites for working electrodes. Measurements confirm a shift in absorption from the UV to visible range. We also measured cell performance, including short-circuit photocurrent, open-circuit photovoltage, and the power conversion efficiency (η) of DSSCs. The obtained η of DSSC (6.05%) with a TiO2 (P-25)/TiO2 (hydrolysis) + 0.005 M PbS electrode is substantially higher than that of the conventional DSSC (5.11%) with a TiO2 (P-25) electrode, due to improved p–n junctions, light-scattering, and light absorption. Finally, the shell of TiO2 (hydrolysis) protected the core of PbS from the corrosive effects of electrolytes, thereby prolonging the life span of the DSSC. This novel approach to electrode design could lead to advances in DSSC as well as other energy applications including photo-catalysis technology.  相似文献   

6.
TiO2 nanoparticles were synthesized by hydrothermal process to prepare metal oxide based photoanode for dye sensitized solar cell (DSSC) fabrication. X-ray diffraction analysis indicates the formation of tetragonal TiO2. High resolution transmission electron microscopy reveals the presence of agglomerated TiO2 particles and the average particle size is found to be 14 nm. The UV–Visible absorption spectrum ensures the absorption maximum at 268 nm. The band gap energy of TiO2 nanoparticles was found to be 3.3 eV which lies in the ultra-violet (UV) region. Impedance studies of TiO2 nanoparticles show an increase in conductivity with an increase in bias voltage. In the present work, the UV active TiO2 nanoparticles are employed for the fabrication of DSSC based on the hybrid co-sensitization of natural dye (Eugenia Jambolana) and organic dye (Eosin). The interfacial charge transfer resistance phenomena of the DSSC determined by electrochemical impedance spectroscopy is discussed in detail. Photovoltaic efficiency of 0.1377 % is achieved for the fabricated DSSC with co-sensitization of natural and organic dyes.  相似文献   

7.
Cluster like mesoporous TiO2 spheres, nanorods and nanoparticles were synthesized by simple wet chemical method. The TiO2 mesoporous spheres, nanorods and nanoparticles were characterized by powder X-ray diffraction, Raman spectroscopy, ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. Accordingly, a possible growth mechanism of mesoporous spheres, nanorods and nanoparticles were discussed. The changes of the dye-sensitized solar cell (DSSC) performance with the variation of the nanostructures of TiO2 which were used in photoanodes have been investigated. The TiO2 mesoporous sphere based DSSC with the film thickness of 20 μm was assembled and a conversion efficiency of 6.69% was obtained.  相似文献   

8.
The surface of light scattering TiO2 particles in the dye-sensitized solar cell (DSSC) was dual-coated with Al2O3 and SiO2 nanoparticles. The surface modification of the light scattering TiO2 particles was performed by a modified sol–gel method using the colloidal alumina and the colloidal silica as surface coating precursors. It was revealed that the dual-coated light scattering TiO2 particles leads to an increase in short-circuit photocurrent of DSSC device, resulting in an increase in energy conversion efficiency. This seems to be due to the increase of the light scattering by a combination of the light scattering TiO2 particles and the oxide nanoparticles such as Al2O3 and SiO2.  相似文献   

9.
This study investigated the applicability of single wall carbon nanotubes (SWCNT) with the functional group deposited on the FTO-glass (Fluorine doped tin oxide, SnO2:F) substrate of the counter electrode for a dye-sensitized solar cell (DSSC). A nanocrystalline TiO2 layer was fabricated on the FTO-glass substrate of the working electrode, and then sintered in a high-temperature furnace. The working electrode with a TiO2 thin film was immersed in the solution of N-719 (Ruthenium) dye for 12 h. Moreover, the counter electrode with a layer of Ag (or without a layer of Ag) and a layer of SWCNT, which were (or was) fabricated in that order on the FTO-glass substrate, was subsequently prepared. Finally, the DSSC was assembled, the power conversion efficiency of the DSSC was measured using an I–V measurement system, and the incident photo conversion efficiency (IPCE) of the DSSC was obtained using the phase-locked loop optical chopper. This study also examined the effects of a layer of Ag deposited on the FTO-glass substrate, the type of organic solvent (such as DMAC and acetylacetone), and the sintering temperature on the performance of the DSSC. This film of SWCNT/Ag markedly increased the IPCE from 3.9% (conventional DSSC with a thin film of platinum on the FTO-glass substrate of the counter electrode) to 15.3% (DSSC with SWCNT/Ag/acetylacetone), as the wavelength of the light was 380 nm. Furthermore, as the wavelength of the light is 550 nm, the IPCE of the DSSC with SWCNT/Ag/acetylacetone (6.8%) becomes nearly equal to that of conventional DSSC (7.2%). Most interestingly, this study shows that the power conversion efficiency of the DSSC with SWCNT/Ag/acetylacetone (1.3037%) is not inferior to that of DSSC with a thin film of platinum on the counter electrode (1.25%).  相似文献   

10.
This study investigates the applicability of a working electrode with a poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) film on a dye-sensitized solar cell (DSSC). This working electrode was designed and fabricated by inserting a PEDOT:PSS film between a fluorine-doped tin oxide (FTO) glass substrate and a layer of nanocrystalline TiO2 particles (P-25). This study also examines the effects of annealing temperature and duration on the transmittance and microstructure of a PEDOT:PSS film as well as the power conversion efficiency of DSSC with this film. The power conversion efficiency of a DSSC with a PEDOT:PSS film (6.37%) substantially exceeds that of a conventional DSSC (4.24%). This result is attributed to the fact that this transparent and conductive PEDOT:PSS film deposited on the FTO glass substrate using a simple spin coating method substantially improves the short-circuit photocurrent per unit area and the fill factor of DSSC.  相似文献   

11.
Bi2Se3/reduced graphene oxide (rGO) composite was successfully synthesized by a facile microwave-assisted hydrothermal method and applied as a counter electrode for efficient dye-sensitized solar cells. By this means, the size and distribution of the formed Bi2Se3 nanoparticles onto a flexible graphene sheet were effectively controlled, which is crucial for achieving high electrocatalytic activity on I3? reduction. Mainly due to the homogeneous single-layer immobilization of Bi2Se3 nanoparticles on a graphene sheet with high density, BiG2 exhibited the highest catalytic activity and the lowest electrolyte diffusion resistance. Adye-sensitized solar cell with BiG2 as a counter electrode can yield 7.09% photoelectric conversion efficiency, which is comparable to that of the cell with a Pt-film counter electrode (6.23), exhibiting the application potential of BiG2 as a low cost non-Pt CE materials for DSSC.  相似文献   

12.
Cerium oxide quantum dots (CeO2 QDs) decorated zinc oxide nanorods (ZnO NRs) heterostructures were grown by a combination of solvothermal and chemical bath deposition methods and used for dye sensitized solar cell (DSSC) applications. Transmission electron microscope images showed the formation of CeO2/ZnO NRs, where ~5 nm CeO2 QDs were decorated on ZnO NRs having 1–2.5 μm length and 100–150 nm width. Photoluminescence spectra showed the significant increase in UV emission after decoration of ZnO NRs with CeO2 QDs. DSSC results revealed that the ZnO NRs with CeO2 QDs leads to an increase in the open circuit voltage and fill factor and exhibited a maximum efficiency of 2.65 %, which was 2.01 times higher than that of unmodified ZnO NRs. The decoration of CeO2 QDs on the ZnO NRs surface may lead to the formation of barrier layer and hindered the back electron transfer and thereby high light harvesting efficiency.  相似文献   

13.
Hydrogenated amorphous silicon film (a-Si:H) as top cell is introduced to dye-sensitized titanium dioxide nanocrystalline solar cell (DSSC) as bottom cell to assemble a hybrid tandem solar cell. The hybrid tandem solar cell fabricated with the thicknesses a-Si:H layer of 235 nm, ZnO/Pt interlayer of 100 nm and DSSC layer of 8.5 μm achieves a photo-to-electric energy conversion efficiency of 8.31%, a short circuit current density of 10.61 mA·cm− 2 and an open-circuit voltage of 1.45 V under a simulated solar light irradiation of 100 mW·cm− 2.  相似文献   

14.
Mesoporous TiO2 nanoparticle (NP) films are broadly used as electrodes in photoelectrochemical cells, dye‐sensitized solar cells (DSSCs), and perovskite solar cells (PSCs). State‐of‐the‐art mesoporous TiO2 NP films for these solar cells are fabricated by annealing TiO2 paste‐coated fluorine‐doped tin oxide glass in a box furnace at 500 °C for ≈30 min. Here, the use of a nontraditional reactor, i.e., flame, is reported for the high throughput and ultrafast annealing of TiO2 paste (≈1 min). This flame‐annealing method, compared to conventional furnace annealing, exhibits three distinct benefits. First, flame removes polymeric binders in the initial TiO2 paste more completely because of its high temperature (≈1000 °C). Second, flame induces strong interconnections between TiO2 nanoparticles without affecting the underlying transparent conducting oxide substrate. Third, the flame‐induced carbothermic reduction on the TiO2 surface facilitates charge injection from the dye/perovskite to TiO2. Consequently, when the flame‐annealed mesoporous TiO2 film is used to fabricate DSSCs and PSCs, both exhibit enhanced charge transport and higher power conversion efficiencies than those fabricated using furnace‐annealed TiO2 films. Finally, when the ultrafast flame‐annealing method is combined with a fast dye‐coating method to fabricate DSSC devices, its total fabrication time is reduced from over 3 h to ≈10 min.  相似文献   

15.

The rare earth elements, gadolinium and samarium, are doped with TiO2 by hydrothermal synthesis technique to study the photoconversion performance of a photoanode in a dye-sensitized solar cell (DSSC). The obtained materials are subjected to the characterizations XRD, HR-TEM, UV–Vis spectroscopy, and XPS. DSSCs are fabricated using N719 dye, redox electrolyte, and platinum counter electrode. Charge-transfer ability was investigated using electrochemical impedance spectroscopy (EIS) on DSSCs. The efficiencies of DSSCs are influenced by the electron transport within the TiO2–dye–electrolyte system. After the fabrication and simulation, among the two, Gd3+-doped TiO2 gives the desired outcomes and higher efficiency (5.542%) than the pure and Sm3+-doped TiO2 and thus it proves to be a superior solar cell anode material.

  相似文献   

16.
A polystyrene-based functional block copolymer is employed as a surface modifier for multi-walled carbon nanotube (MWCNT) paste utilized in the fabrication of a MWCNT counter electrode (CE) in dye-sensitized solar cells (DSSCs). The surface modification of MWCNTs paste improves the dispersibility of MWCNTs, resulting in a facilitated fabrication of electrodes through the screen printing procedure, as evidenced by a lower viscosity and more homogeneous paste, as well as a more uniform MWCNT coating. Upon removing organic compounds from the paste through a thermal treatment procedure, the DSSC with the modified CE exhibits enhanced solar energy conversion efficiency (η) compared with that of the neat MWCNT CE. The behavior stems from an improvement in the overall redox reaction kinetics and the short-circuit current (J sc) of the DSSC. The DSSC also exhibits an improved η value over an extended storage period, which demonstrates a successful combination of processability, performance, and stability of the DSSC achieved by using an optimum amount of surface modifier for MWCNTs.  相似文献   

17.
The bottom-straight and top-bent dual anatase TiO2 nanowires directly on flurine-doped tin oxide (FTO) glass substrate are successfully synthesized for the first time via a two-step solvothermal reaction, which obtains single anatase TiO2 nanowires with the diameter of 250–450?nm and the length of ~49?μm in the first growth step, and the slender TiO2 nanowires with the diameter of 40–80?nm intertwining larger nanowires to form dual nanowires network in the secondary growth step. Dye-sensitized solar cell (DSSC) based on dual TiO2 nanowires exhibits the power conversion efficiency of 5.30%, which is much higher than those of DSSCs based on the pristine single TiO2 nanwires (2.36%) due to the twining network like dual nanowires structure maintaining excellent electron transport and simultaneously enhancing the specific surface area and light scattering ability. Moreover, by TiO2 sol treatment, the performance of dual TiO2 nanowires based DSSC can be further enhanced, reaching an impressive power conversion efficiency (PCE) of 7.65%.  相似文献   

18.
Three-dimensional nanoparticles-based ZnO hierarchical spheres (ZnO-HS) with strong light harvesting and dye loading abilities have been fabricated by a simple hydrothermal method in this paper. These ZnO-HS were designed as the overlayer for light blocking and applied to the dye-sensitized solar cells (DSSCs) based on bare ZnO nanoparticles (ZnO-NP) or TiO2 nanoparticles (TiO2-NP). The results show that the values of the short-circuit current density (J sc) and the power conversion efficiency (η) have been heightened up to 12.6 mA cm?2 and 3.40 % for the ZnO-NP/ZnO-HS double-layered DSSC, far higher than the bare ZnO-NP DSSC. However, another DSSC assembled by the TiO2-NP/ZnO-HS double-layered film displays an adverse result for the decreasing of J sc and η even though the ZnO-HS light blocking layer has been established on the TiO2-NP film. According to the electrochemical impedance data compared between the ZnO-NP/ZnO-HS double-layered and TiO2-NP/ZnO-HS double-layered DSSC, it is found that the former possesses less possibility for the occurrence of charge recombination and electronic loss, which is responsible for its better photovoltaic response.  相似文献   

19.
A new sensitizer, Ru(2,2′-bipyridine-4,4′-dicarboxylic acid)-4,4′-bis(2-(4-N,N′-diphenylaminophenyl)ethenyl)-2,2′-bipyridine) (NCS)2, denoted K77-7, was synthesized. The UV–vis spectrum of K77-7 was characterized. Dye sensitized solar cells (DSSC) based on K77-7 were fabricated and devices J/V curves were measured. The effects of co-adsorbent chenodeoxycholic acid, solvent in electrolyte, TiO2 light scattering layer, and treatment of TiCl4 aqueous solution on device efficiency were discussed. Under solar illumination of 100 mW cm?2 (A.M. 1.5), the optimized DSSC device efficiency of 10.1 % was obtained.  相似文献   

20.
Dye-sensitized solar cells (DSSCs) were fabricated based on multi-wall carbon nanotube (MWCNT)-TiO2 photo-anodes, which were prepared by the procedures of cutting MWCNTs and subsequent immobilization TiO2 on MWCNTs. Through a detailed study, we found that cut-MWCNTs with proper ultrasonication time (2 h) and proper content (0.075%) resulted in 58 and 40% increase in short-circuit photocurrent and overall energy conversion efficiency, respectively, compared with that of a DSSC using only TiO2 photo-anode. The enhancement of cut-MWCNTs for DSSC was attributed to the introduction of percolative conductive paths which facilitate the rapid electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号