首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
在不同操作条件下,采用PV-4A型颗粒速度、密度测定仪测量了提升管与流化床耦合反应器大型冷态实验装置提升管内速度沿轴向、径向的分布。结果表明,在耦合流化床反应器提升管段,当表观气速一定时,颗粒的时均速度随循环强度的增加而减小;当循环强度相近时,在床层任何轴向、径向位置的颗粒时均速度都随着表观气速的增大而增大。由于提升管出口流化床层及分布器的存在,提升管内轴向速度呈现先增加后减小的分布特征。利用实验数据回归的提升管内颗粒滑落系数的经验模型计算值与实验值吻合较好  相似文献   

2.
通过试验研究测定了提升管反应器中催化剂颗粒的速度分布,提出了一种具有切向一次风,变直径的抗返混提升管反应器结构。试验证明,这种结构抗返混性能良好,在进料喷嘴上方一定高度之内几乎没有返混现象出现,并且在此范围内催化剂颗粒速度分布变得比较均匀。  相似文献   

3.
4.
催化裂化提升管反应器预提升段流动特征   总被引:1,自引:0,他引:1  
陈新国  徐春明 《石化技术》2001,8(4):207-210
基于双流体的概念,耦合了颗粒端动能模型的颗粒流动力学模型,并结合循环流化床内气粒两相间传热及催化裂化反应的十三集总动力学模型,探讨了催化裂化提升管反应器预提升段催化剂颗粒的流动特征,给出了催化剂颗粒的速度场。  相似文献   

5.
在FCC提升管流化床冷模实验装置上,以空气-FCC催化剂两相体系为研究对象,在不同的操作条件下分别考察了在提升管不同高度分层注入催化剂对提升管内催化剂流动特性的影响。结果表明,注料影响区域在注料入口至其上下部0.3~0.5 m内,在提升管一定高度处注入催化剂可明显改善提升管轴向催化剂密度、径向催化剂密度和径向催化剂颗粒速度分布的均匀性,尤其是在r/R<0.6的中心区域,这种改善表现尤为明显。两点同时注入催化剂对提升管内催化剂流动特性的改善效果较单点注入催化剂的改善效果更加明显。  相似文献   

6.
针对催化裂化提升管反应器喷嘴进料混合段催化剂颗粒不均匀分布的现象,提出了一种新型结构的进料混合段,并在内径为186mm,高14m的大型提升管冷模装置上测量了在这种结构中的颗粒速度及空隙率径向分布的特征,并同传统进料混合结构进行了对比。实验结果表明,采用这种结构时颗粒速度径向分布较平缓;固体颗粒浓度分布虽仍呈现中心稀、边壁浓的环核结构,但环核之间的浓度梯度减小,浓环的范围也减小很多,颗粒相的流场得到了较大改善。  相似文献   

7.
在大型循环流化床冷态模拟试验装置上对喷嘴与提升管竖直方向的不同夹角进行了考察。对3种不同夹角结构下的颗粒浓度轴径向分布、瞬时颗粒浓度信号以及概率密度进行了分析研究,结果表明:在预提升段和输送段3种结构并无明显差别,颗粒浓度以及瞬时信号波动的差别主要集中在喷嘴上方附近区域;相比于传统等径提升管而言,变径提升管内床层固含率增加,颗粒浓度分布更加均匀,颗粒浓度梯度减小,有利于气固两相的混合与接触;在变径提升管内,随着喷嘴角度的增大,气体在整个截面上的扩散速度增加,径向分布更加均匀,气固分离现象得到了有效抑制,气固湍动剧烈,接触效率较高。  相似文献   

8.
在冷态试验的基础上通过理论分析,说明了在催化裂化提升管反应器预提升段内,混合加速区、均匀加速区、充分发展区分别可以看作是三维流场、二维流场及一维流场。针对充分发展区提出了无量纲因数α表示径向密度分布的不均匀特征,并根据分析α的增减性,验证了采用增加气速、边壁注气、缩放形管技术可改善提升管径向密度分布的可行性  相似文献   

9.
10.
提升管与流化床耦合反应器内固含率的轴向分布   总被引:1,自引:1,他引:0  
针对催化汽油辅助反应器改质降烯烃工艺,结合提升管与流化床的特点,建立了一套提升管与流化床耦合反应器大型冷态实验装置。在不同操作条件下,采用多点压力密度仪测定了提升管内轴向压力梯度及截面平均固含率沿轴向的分布规律。结果表明,提升管内固含率的轴向分布呈上下两端大、中间小的C型分布特征,颗粒在提升管内沿轴向的运动可分为颗粒加速区、充分发展区和颗粒约束返混区;提升管内截面平均固含率随颗粒循环强度的增大而增大,随表观气速的增大而减小,提升管出口的流化床内颗粒静床高度只对颗粒约束返混区固含率有影响,而对颗粒约束返混区长度及颗粒约束返混区以下区域固含率影响较小。利用实验数据回归出了提升管内截面平均固含率的轴向分布及颗粒约束返混区最大颗粒返混比的经验模型,其计算值与实验值吻合较好。  相似文献   

11.
采用动能探头测定了循环流化床中(内径186mm,高8m)颗粒动能的径向分布及其随操作条件和轴向位置的变化规律,并结合空隙率的径向分布,同时研究了颗粒速度、颗粒通量的径向分布规律。实验结果充分表明,在循环流化床中,颗粒流动在床层径向具有很大的不均匀性,并呈明显的内循环流动结构。实验结果对于探索循环流态化不均匀流动机理、建立气固流动模型以及寻求强化和改善反应器操作的途径,均具有重要的意义。  相似文献   

12.
将基于能量最小多尺度方法的曳力模型耦合到欧拉-欧拉双流体模型中,采用全滑移边界条件处理壁面处的颗粒相,对颗粒相为Geldart A类颗粒的循环流化床体系进行了模拟研究。考察了6种颗粒碰撞恢复系数(ess)(0,0.5,0.8,0.9,0.99,0.995)对提升管内轴向空隙率和颗粒循环量等气固流动特性的影响。模拟结果表明,由6种ess计算的轴向空隙率分布结果均呈现典型的底部密相区、中间过渡区和顶部稀相区的"S"型分布;ess较大(0.99,0.995)时能够提高提升管内轴向空隙率分布预测值和实测值的吻合程度,预测值更真实。;当ess=0.99,0.995时,提升管底部的颗粒相浓度分布预测结果呈现典型的"环-核"结构特征;ess对提升管底部颗粒相浓度和速度径向分布的影响较大。  相似文献   

13.
优化现有的油、剂逆流接触催化裂化提升管进料段结构,将进料喷嘴倾斜向下与内径变化相耦合。通过大型冷模实验装置,考察了在逆流变径耦合催化裂化提升管进料段不同轴向高度,固含率和颗粒速度的径向分布及操作条件对其产生的影响,并分别与前人所用的同径结构内的分布结果进行比较。结果表明,与对应的油、剂逆流接触催化裂化提升管进料段同径结构相比,变径结构进料段内,射流控制区域范围约缩短45.2%,且变径结构进料段内局部固含率分布更加均匀,有利于油、剂两相均匀混合。在实验操作范围内,提高预提升气速和适当提高进料喷嘴气速可使催化剂颗粒在径向分布更加均匀。  相似文献   

14.
重整径向反应器变况流动布气系统模拟   总被引:4,自引:0,他引:4  
反应物流参数随反应历程的变化较大是石油化工催化重整过程的重要特征。本文在试验研究的基础上,建立了径向反应器气体变况流动的流体力学数学模型,并给出求解变况流动条件下布气系统流体力学数学模型的数学方法。借此模拟探讨了径向反应器在变况流动条件下主要结构参数和操作条件对轴向均匀布气的影响,为重整径向反应器的优化设计及操作提供理论依据和参考。  相似文献   

15.
修改Gupta等的催化裂化提升管反应器稳态模型,在能量衡算方程中添加器壁散热项,以模拟器壁散热对反应器的影响;使用FORTRAN编程语言实现稳态模型在AspenPlusTM软件中的求解;采用某炼油厂提升管反应器现场数据及文献结论,对修改的模型进行了参数校正及模型验证;利用经校正及验证的反应器模型,模拟预测了器壁散热对装置产物分布等的影响。器壁散热抑制了提升管内油气裂化反应,恶化了装置出口产物分布,从而表明了在工程设计及工业运行中加强提升管器壁保温的重要性。  相似文献   

16.
液固移动床中应力分布和颗粒流动状态研究   总被引:1,自引:0,他引:1  
陈胜  韩明汉  徐聪  金涌 《石油化工》2003,32(7):582-587
为研究循环移动床反应器的应力分布和颗粒流动状态,建立了由流体相及固相质量连续方程和动量守恒方程组成的循环移动床反应器模型,考虑了流体质量、流体对固相产生的浮力、锥形床边壁对颗粒的支撑作用以及壁面摩擦力的影响。研究表明,循环移动床的应力集中区处于再生室和反应室连接立管的最下端,采用高径比较小的再生室可降低应力集中区的应力。提出了底部立管中流动的分区图,并可根据压力梯度来判断立管中颗粒的流动状态。  相似文献   

17.
在小型提升管流化催化裂化(FCC)装置上,使用FCC催化剂,进行了甲醇与FCC汽油的混炼实验,考察了反应温度、甲醇与FCC汽油的质量比(混炼比)及甲醇不同进料位置对精汽油族组成、裂化气组成和液体收率的影响。实验结果表明,甲醇与FCC汽油共混进料的反应效果优于甲醇提前或延后FCC汽油进料时的反应效果;甲醇与FCC汽油混炼在改善汽油质量的同时,有利于增产裂化气和提高液体收率。甲醇与FCC汽油混炼的适宜条件为:反应温度400~420℃、混炼比为5%~10%、剂油比10~12。在此条件下,FCC汽油烯烃含量下降50%以上,液体收率增加3%左右,裂化气中干气质量分数小于1.5%,精汽油与液化石油气收率之和达到98%以上。  相似文献   

18.
变径提升管内颗粒流动特性的研究   总被引:1,自引:1,他引:1  
采用提升管冷模实验装置,对40mm/20mm和24mm/12mm两种变径提升管和一种20mm单一直径提升管内的颗粒流动特性进行实验。考察了颗粒循环速率(Gs)和气速对变径提升管平均固含率(εs)和截面平均颗粒速度(Up)的影响。实验结果表明,采用变径提升管可改变固含率(εs)和Up分布;40mm/20mm变径提升管扩径段εs保持在0.1~0.3之间;提高Gs或降低气速,截面径向各点的εs都增大。提高Gs会导致Up增大。增大气速对扩径段Up的影响不明显,但会明显提高缩径段的Up。40mm/20mm提升管扩径段εs达到0.20以上,比24mm/12mm提升管扩径段的εs提高30%。相同气速和Gs下,40mm/20mm提升管扩径段底部的εs达到0.25,是20mm提升管的2~3倍。  相似文献   

19.
利用Fluent研究不同粒径、入口位置以及不同气固相速度下的颗粒运动过程及粒子的分布规律,求解过程中采用离散随机轨道模型。结果表明:①颗粒粒径越大,颗粒在进料管内回转往复停留时间较长,同时混合腔内颗粒运动的回转半径也越大,有利于催化剂颗粒的流动扩散,增强气固接触效果。②入口位置对反应器内颗粒的运动规律影响不大。③气固相速度发生变化时,气相速度对颗粒运动过程影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号