首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
硅油基钴/Fe3O4复合磁流体的研制及磁性能   总被引:6,自引:0,他引:6  
用化学法制备纳米钴、Fe3O4微粒,用月桂酸、月桂酸钠对其进行表面改性后制成磁胶粒,磁胶粒经中间体包覆后二次分散于硅油中,得到饱和磁化强度值为106.25mT、透光率低于2%的硅油基钴/Fe3O4复合磁流体。利用振动样品磁强计测定磁化强度,用透射电镜测定磁微粒,大部分Co、Fe3O4微粒呈球型晶貌,平均粒径约为12.0nm。通过正交实验确定了制备钴微粒的最佳工艺条件为反应温度65℃、搅拌转速650r/rain、反应时间7h;Co胶粒和Fe3O4胶粒质量比1:3;月桂酸、月桂酸钠、中间体、硅油4者之间的质量配比为1:0.7:10.2:32。研究表明用适量的Co微粒取代Fe3O4磁流体中的一部分Fe3O4微粒,可以使磁流体的饱和磁化强度提高12.18%。  相似文献   

2.
采用化学共沉淀法制备了Fe3O4磁流体。以阴离子表面活性剂油酸钠对磁性颗粒进行包覆,分析了pH值、温度和Fe2+/Fe3+比例等制备条件对Fe3O4磁流体的影响。运用磁天平、粒度测试仪对磁流体的粒径和磁化率进行了测定,并用傅里叶变换红外光谱仪(FT-IR)、透射电子显微镜(TEM)和振动样品磁强计(VSM)等对磁流体进行了表征。实验和分析结果表明,所制备的磁流体具有超顺磁性,粒径约为16 nm,饱和磁化强度在73.8 emu/g以上。  相似文献   

3.
Fe3O4磁流体的水热法制备与表征   总被引:3,自引:0,他引:3  
采用水热法制备了水基Fe3O4磁流体,利用X衍射仪(XRD)和透射电镜(TEM)对磁粒子的组成、结构及粒径进行了分析,利用古埃磁天平研究了磁流体的饱和磁化强度和稳定性,证实所制得的磁粒子为纯相Fe3O4纳米粒子,平均粒径为9nm左右,磁流体饱和磁化强度为46mT,稳定性较好。  相似文献   

4.
以Fe Cl3·6H2O和Fe Cl2·7H2O为反应试剂,油酸作为修饰剂,利用共沉淀法制备了Fe3O4粉末。改变油酸的用量、p H值及反应温度可以对产物的粒径、形貌和分散性产生影响。通过X衍射仪(XRD),扫描电子显微镜(SEM)和振动样品磁强计(VSM)对样品的结构、形貌和磁性能进行了表征。结果表明:在一定范围内提高p H值、降低反应温度以及增加油酸的加入量可以改善颗粒的分散性,窄化粒径分布。实验的最佳工艺参数:p H=9,T=50℃,油酸的质量为3.76g,该实验条件下制备的Fe3O4在室温下具有较小的矫顽力和剩磁,表现出超顺磁性,其饱和磁化强度为50.22emu/g。  相似文献   

5.
化学法制备铁磁流体的研究   总被引:1,自引:0,他引:1  
叙述了以Fe、Fe3O4.为基体材料、油酸等为活性剂,烃类化合物为载流体合成铁磁流体的实验结果。研究表明:在最佳条件下合成的铁磁流体,饱和磁化强度远高于单纯以Fe3O4.为基体材料的传统磁流体,从而为研制高性能的新型磁流体提供了一种途径。  相似文献   

6.
为提高Fe3O4纳米粒子的磁性能,研究了Dy^3+掺杂对Fe3O4纳米粒子宏观磁性及粒径的影响。适量的掺杂可使Fe3O4粒子的粒径增大,饱和磁化强度提高。过量的掺杂不会引起粒径的进一步增大,但会引起饱和磁化强度的下降。在反应温度为55℃,搅拌转速900r/min,反应时间1.5h,掺镝量为12.17%的条件下,用化学共沉淀法制备出平均粒径为18.6nm、饱和磁化强度可达168.73mT的镝铁氧体粒子。  相似文献   

7.
为了提高磁流体的磁性能和热稳定性,采用Fe-Co基软磁合金粒子和高粘度载液制备磁流体.利用X射线衍射仪、扫描电子显微镜、震动样品磁强计和旋转粘度计对磁性粒子和磁流体的组成成分、微观结构、磁性能与热稳定性进行了测试分析.结果表明:在(Fe0.8Co0.2) 98-xBxSi2软磁合金中,随着B含量的减少,磁性粒子的饱和磁化强度和剩磁逐渐升高;当Fe68Co22B10磁性粒子的质量分数为35%时,磁流体饱和磁化强度达到47.08 A·m2/kg,剩磁为3.96 A·m2/kg,最高粘度为46.3 Pa·s;随着温度的上升,磁流体粘度下降,且在65~100℃之间温度系数较低,表现出更好的热稳定性.所制备的磁流体具有较高的粘度、磁性和热稳定性.  相似文献   

8.
采用氧化共沉淀法制备出Mn-Zn铁氧体前驱粉体,再在空气中和氮气中对前驱粉体进行不同温度的热处理,通过X射线衍射仪(XRD)和振动样品磁强计(VSM)对样品的相和磁性能进行表征。研究结果表明:空气中热处理的样品中均出现了Fe2O3,随热处理的温度升高,Fe2O3的含量减少、样品的饱和磁化强度和初始磁导率增大;600℃氮气中热处理的样品未出现Fe2O3;其饱和磁化强度比空气中同一温度下热处理的要高。  相似文献   

9.
采用共沉淀法制备出粒径为10nm左右、具有超顺磁性的Fe3O4纳米粒子,在Fe3O4纳米粒子外包覆SiO2合成了磁性Fe3O4/SiO2复合粒子,研究了该复合粒子对水溶液中Cd2+离子的吸附性能.利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、红外光谱(FTIR)、振动样品磁强计(VSM)和原子吸收分光光度计(AAS)对样品进行表征,考察了SiO2不同包覆量对吸附剂吸附性能的影响.结果表明:随着SiO2包覆量的增大,SiO2壳层厚度增大,内核中包埋的Fe3O4粒子数量增多,Fe3O4/SiO2复合粒子尺寸随着增大,由50nm左右增大到300 nm左右;Fe3O4纳米粒子表现出了良好的磁性能,比饱和磁化强度达73.6A·m2·kg-1,Fe3O4/SiO2复合粒子的比饱和磁化强度随SiO2包覆量的增大而逐渐减小;Fe3O4/SiO2复合粒子的吸附率随着SiO2包覆量的增多而逐渐增大,最大吸附率为91.0%.  相似文献   

10.
镝改性铁氧体磁流体的制备与表征   总被引:11,自引:0,他引:11  
为制备工艺简单且饱和磁化强度高的磁流体,采用化学共沉淀法通过对铁氧体磁流体改性制备了水基稀土镝(Dy)复合铁氧体磁流体。采用红外光谱测试,证明产品为表面活性剂所包覆的纳米级磁粉,粒径<10nm;采用XRD及X射线光电子能谱分析证实产品为掺杂有少量镝离子的铁氧体磁粉;采用古埃磁天平对产品进行了性能测试并讨论了镝铁氧体磁粒子的改性及形成机理。实验表明:稀土镝(Dy3 )的加入可提高铁氧体磁流体的饱和磁化强度,且当镝用量为n(Fe)∶n(Dy3 )=30∶1时,磁流体饱和磁化强度最高。  相似文献   

11.
采用溶剂热法合成稀土元素镧掺杂的Mn0.5Zn0.5Fe2-xLaxO4(x=0、0.01、0.02、0.03、0.04)粉体,通过XRD、SEM、VSM、IR等多种手段对样品表征。结果表明,当掺杂La3+后,La3+会进入Mn-Zn铁氧体晶格中,面心立方尖晶石相晶格结构逐渐被破坏;La3+掺杂量x=0.04时,产物中开始出现杂相;随着x值不断增大,铁氧体球状形貌被破坏,分散性变差。Mn0.5Zn0.5Fe2-xLaxO4颗粒在室温下表现出亚铁磁性。饱和磁化强度随着La含量的增加而增大,当x=0.03时,饱和磁化强度达到最大值64.9emu·g-1。在50k Hz交变磁场作用下,Mn0.5Zn0.5Fe1.97La0.03O2颗粒温度可升温至64.8℃,表现出较好的磁热性能。  相似文献   

12.
Fe/Al2O3纳米复合材料的结构和磁性   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了复合材料Fe2O3/Al2O3,将其在氢气中还原得到了纳米复合材料Fe/Al2O3。利用X-ray衍射、Mssbauer效应和振动样品磁强计对样品的结构和性质进行了研究,结果表明,Fe2O3含量对样品的还原过程及结构和性质有明显的影响。随Fe2O3含量的增加,还原后样品中α-Fe的晶粒尺寸变大,样品的比饱和磁化强度增加,矫顽力减小。Mssbauer效应结果显示,在一些样品中存在超顺磁现象和FeAl2O4相。  相似文献   

13.
导向药物用纳米Fe3O4磁性粒子的制备及表征   总被引:12,自引:0,他引:12  
采用化学共沉淀法先生成Fe3O4微粒,再将其分散于含有表面活性剂的水中的方法制备了纳米Fe3O4磁性粒子.通过双层表面活性剂包覆可使Fe3O4磁性粒子稳定分散于水中而不聚集.在反应溶液pH值为11~12,温度为60℃及油酸钠为第1层表面活性剂,十二烷基苯磺酸钠为第2层表面活性剂的条件下制备了粒径为36nm的Fe3O4磁性粒子.实验结果表明:反应溶液pH值和表面活性剂是影响Fe3O4磁性粒子稳定性、粒径和饱和磁化强度的主要因素;利用XRD和IR证实了Fe3O4磁性粒子中存在Fe3O4和表面活性刺结构.所制备的纳米级Fe3O4磁性粒子可用作导向药物的磁载体.  相似文献   

14.
α-Fe2O3/Fe3O4纳米复合材料的相变化及室温磁性质   总被引:1,自引:0,他引:1  
为研究纳米α—Fe2O3和Fe3O4在受热过程中的物相变化过程和磁学性质,采用燃烧合成方法制备了含α—Fe2O3和Fe3O4不同尺寸的纳米复合材料.用XRD、TEM、穆斯堡尔谱和振动样品磁强计,表征纳米复合材料相变化过程中的性质.结果表明,低于450℃煅烧的复合材料样品中含有一定量的超顺磁相,该相影响着此温度以下煅烧得到的纳米复合材料的磁性质,晶粒尺寸在该温度附近也具有临界现象;复合材料中存在的超顺磁相是超细颗粒尺寸α—Fe2O3和Fe3O4的贡献;当复合材料中的超顺磁相消失后,随煅烧温度提高在复合材料中α-Fe2O3的质量分数不断增加,而Fe3O4的质量分数不断降低直至消失.  相似文献   

15.
采用微波辐射法制备了油酸(OA)表面修饰的Fe_3O_4颗粒,透析后得到稳定的Fe_3O_4磁流体。在Fe_3O_4磁流体和十二烷基硫酸纳(SDS)的存在下,以甲基丙烯酸甲酯(MMA)和2-丙烯酰胺基-甲基丙磺酸(AMPS)为单体,采用微波辐射乳液聚合法制备了MMA-AMPS共聚物包覆Fe_3O_4磁性高分子微球,并对磁性高分子微球的形态与结构进行了表征,测定了磁性高分子微球的粒径、磁含量和饱和磁化强度。结果表明:在优化聚合反应条件下,通过微波辐射乳液聚合法可制备出粒径为0.25~0.50μm,饱和磁化强度为4.2emu·g-1的磁性高分子微球。  相似文献   

16.
采用湿化学法制备了稀土镝铁氧体纳米磁粒子,并用月桂酸进行了表面修饰。利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、振动样品磁强计(VSM)等仪器对产物进行表征,研究Dy3+的掺杂对Fe3O4纳米磁粒子磁性能的影响;同时对镝铁氧体磁粒子形貌、粒径分布、晶型结构进行了分析。结果表明,用适量的稀土Dy3+对Fe3O4纳米磁粒子进行掺杂,可以显著地提高其磁性能,且晶型结构不变;制备的镝铁氧体磁粒子的平均粒径约13.2nm,表面修饰后的磁粒子室温下的饱和磁化强度为189.4mT,具有超顺磁性。  相似文献   

17.
自蔓延燃烧法制备Ni0.4Cr0.4Zn0.2CexFe2-xO4(x=0,0.1)铁氧体,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、振动样品磁强计(VSM)和矢量网络分析仪表征了铁氧体的结构形貌、磁性能及介电性能。结果表明:两种粉体粒径均在180nm左右,晶格常数为0.8364nm。由于Ce3+取代了部分Fe3+,导致Ni0.4Cr0.4Zn0.2Ce0.1Fe1.9O4的饱和磁化强度Ms从75.53emu/g增大到81.53emu/g,剩余磁化强度Mr由27.85emu/g增至32.58emu/g,但矫顽力Hc从481.56Oe降至453.42Oe,在8.0~20.0GHz频率范围内,Ni0.4Cr0.4Zn0.2Ce0.1Fe1.9O4的反射损耗明显高于Ni0.4Cr0.4Zn0.2Fe2O4,Ni0.4Cr0.4Zn0.2Fe2O4的反射损耗在-3.98d B~-5.11d B之间,Ni0.4Cr0.4Zn0.2Ce0.1Fe1.9O4的反射损耗在-5.18d B~-6.94d B之间。  相似文献   

18.
采用溶胶-化学共沉淀法及掺杂元素制备得到近六角形、微米级、片状Zn_xCo_(2-x)-W型铁氧体(Ba Zn_xCo_(2-x)Fe16O27)。研究了所制备铁氧体的物相组成、颗粒形貌、静磁性能。通过单因素方差分析判断了实验因素(x值、Ba/Ba Zn_xCo_(2-x)Fe16O27原料质量比及焙烧温度)对所制备铁氧体饱和磁化强度Ms和矫顽力Hc的影响显著性。结果表明,x值、Ba/Ba Zn_xCo_(2-x)Fe16O27原料质量比及焙烧温度均对Znx-Co2-x-W型铁氧体的Ms和Hc存在显著影响;二次合成及掺杂元素的方法使颗粒径向尺寸达0.7~4μm,径厚比达7~10;片状颗粒径向尺寸、径厚比及产物纯度明显提高,溶胶-化学共沉淀法制备的Ba Zn_xCo_(2-x)Fe16O27的Ms较溶胶凝胶法制备的Ba Zn_xCo_(2-x)Fe16O27的Ms明显提高。  相似文献   

19.
利用交流磁控溅射法,在H2中采用Fe3O4靶材,成功制备了(111)取向的Fe3O4薄膜.对薄膜样品进行XRD测试,研究不同衬底温度对成相的影响.对薄膜表面的XPS测试结果表明所制备薄膜为单相Fe3O4沉积过程中随H2量增大,薄膜表面粗糙度有显著增加.对薄膜进行磁学性能的测试,饱和磁化强度高达5 000Oe,反映了反相晶粒边界(APBs)的存在.Tv以下较低的晶格对称度导致了矫顽场的增大.薄膜的电阻随温度变化曲线(R-T)显示115K附近出现Verwey相变,对R-T曲线的拟和结果显示,Fe3O4薄膜在40~300K温度区间为电子的变程跳跃VRH(Variable range hopping)导电机制.  相似文献   

20.
将均匀设计方法应用于溶胶凝胶自蔓延法制备M型钡铁氧体(Ba Fe12O19)。以饱和磁化强度(Ms)和矫顽力(Hc)为实验指标,分别建立了Ba Fe12O19的Ms和Hc与实验因素间的回归方程。回归方程表明了实验因素铁钡摩尔比、柠檬酸与金属离子总数摩尔比、反应p H值、预烧温度、焙烧温度和保温时间与产物磁性能间的内在规律性联系;揭示了各因素对Ms和Hc产生影响的主次顺序;分别确定了Ms和Hc的因素最优水平取值并通过验证实验确认。为制备磁性能优良的Ba Fe12O19提供了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号