首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
《塑料科技》2016,(5):83-86
以三嗪成炭发泡剂(CFA)、聚磷酸铵(APP)及二氧化硅(Si O2)复配制备成三嗪膨胀阻燃剂(IFR);将聚苯醚(PPO)以不同的比例取代IFR体系中的CFA成分,制备出新型膨胀阻燃剂,并将其添加到聚丙烯(PP)中制备阻燃PP材料。通过极限氧指数(LOI)和垂直燃烧(UL 94)测试研究了材料的阻燃性能,通过拉伸性能、弯曲性能和冲击性能测试研究了材料的力学性能,通过热重分析(TGA)测试研究了材料的热稳定性及热降解行为。结果表明:当阻燃剂用量为20%、PPO替换CFA的量为20%时,阻燃PP材料能通过UL 94V-0级,氧指数为31.0%;当阻燃剂用量为22%、PPO替换CFA的量为30%时,阻燃PP材料依然能通过UL 94V-0级,氧指数为30.9%,随着PPO替换比例的增加,材料的阻燃性能逐渐下降。力学性能测试结果表明,与单独添加IFR相比,随着PPO替换量的增加,阻燃材料的力学性能略有下降,但下降幅度不大。TGA测试结果表明,当阻燃剂用量为20%、PPO替换20%的CFA时,对材料的热降解行为和成炭性能几乎没有影响。总之,在保证材料阻燃性能的前提下,用适量PPO替换CFA,在一定程度上降低了三嗪膨胀阻燃剂及膨胀阻燃PP材料的成本,从而提高了产品的市场竞争力。  相似文献   

2.
含淀粉膨胀阻燃剂对聚丙烯的性能影响研究   总被引:3,自引:0,他引:3  
采用淀粉与磷酸三聚氰胺复配成膨胀型阻燃剂,制备了膨胀阻燃聚丙烯(PP),利用热重分析法(TG)与差示扫描量热法(DSC)比较了纯PP和阻燃PP的热稳定性及成炭性,研究了阻燃剂对PP阻燃性能和力学性能的影响。结果表明,当阻燃剂用量为35份时,阻燃PP的拉伸强度为17.1 MPa,断裂伸长率为23.5%,弯曲弹性模量为1.62 GPa,弯曲强度为36.36 MPa,氧指数达到26%。  相似文献   

3.
以分子筛作为协效剂,与未加协效剂的膨胀阻燃剂(RTB-IFR)及其他助剂复配制成膨胀阻燃剂(IFR),用于聚丙烯(PP)的阻燃。研究了添加不同分子筛的IFR对PP的阻燃性能、力学性能及热降解行为的影响。结果表明:4A和H-BETA分子筛的阻燃效果比13X、ZSM分子筛好;分子筛对材料的力学性能影响不大;添加分子筛的阻燃剂改变了IFR和IFR-PP的热降解过程,提高了高温成炭量、炭层的热稳定性和热绝缘性,使IFR-PP的阻燃性能得到提高。  相似文献   

4.
利用微胶囊化技术合成的新型磷氮体系无卤膨胀型阻燃剂IFR对聚丙烯(PP)进行阻燃。考察了阻燃剂IFR中聚磷酸铵(APP)的微胶囊包覆效果以及阻燃剂IFR对PP的阻燃性能、力学性能、热稳定性以及表面形态等的影响。结果发现包覆后的APP粒度均匀致密,效果比较良好;在PP中添加的IFR阻燃剂质量分数达到30%左右时,有明显的成炭效果,氧指数达到32%,阻燃性能提高;力学性能下降也趋于平缓;且IFR与PP的界面相容性比较良好;阻燃PP材料的热稳定性也得到了提高。  相似文献   

5.
氧化亚镍在RTB-IFR膨胀阻燃体系中的协效作用   总被引:1,自引:1,他引:0  
将氧化亚镍(NiO)与膨胀阻燃剂(RTB-IFR,未添加协效剂成分)复配,应用在聚丙烯(PP)复合材料中以研究NiO的阻燃协效作用。探讨了NiO对膨胀阻燃PP复合材料的阻燃性能、力学性能及热降解行为的影响。结果表明,在PP中单独添加20%RTB-IFR阻燃剂,PP复合材料具有较好的阻燃性能,氧指数为31.8%,3.2 mm样条能通过UL94 V-0级。当RTB-IFR阻燃剂中加入5%NiO时,PP复合材料的阻燃性能明显得到提高,氧指数达到33.6%,1.6 mm样条即能通过UL94 V-0级。同时,NiO对PP复合材料的力学性能影响较小。NiO的引入改变了RTB-IFR及RTB-IFR/PP体系的热降解过程,降低了PP复合材料的热分解速率,提高了复合材料高温时的残炭量和热稳定性。  相似文献   

6.
以三聚氰氯、γ-氨丙基三乙氧基硅烷及对苯二胺为主要原料合成了一种含有机硅的三嗪类成炭剂(CA),将其与多聚磷酸铵(APP)复配成膨胀型阻燃剂(IFR)用于聚丙烯(PP) 阻燃。研究了APP与CA的配比及用量对PP阻燃性能、力学性能和热稳定性能的影响。结果表明,阻燃改性后的PP具有良好的阻燃性能和力学性能;CA具有优良的成炭作用,含硅基团能够促进PP成炭,提高了PP的热稳定性,有效地抑制了PP的进一步燃烧;当APP/CA为3/1、复配阻燃剂添加量为28 %(质量分数,下同)时,阻燃 PP的极限氧指数为32.5 %,垂直燃烧达UL 94 V-0级。  相似文献   

7.
选择硅酸镁作为协效剂,用在膨胀阻燃剂中,然后制备了膨胀阻燃聚丙烯(PP)材料,探讨了硅酸镁对膨胀阻燃剂聚丙烯材料的协效作用。结果表明,膨胀阻燃剂中加入硅酸镁后,聚丙烯材料的的阻燃性能明显提高,1.6 mm样条达到UL94V-0级,材料的极限氧指数值为34.5%,硅酸镁对阻燃聚丙烯材料的力学性能影响小。热重分析表明,硅酸镁可以催化酯化反应,促进成炭,提高了聚丙烯材料的热稳定性。  相似文献   

8.
以固体超强酸改性分子筛作为协效剂,与RTB-IFR膨胀阻燃剂(未含协效剂成分)复配,用于PP的阻燃.研究添加改性分子筛的RTB-IFR对PP的阻燃性能、力学性能及热降解行为的影响.实验表明:对4A分子筛进行改性后,添加到RTB-IFR中,材料的阻燃性能没有明显提高,对13X分子筛进行改性,添加到RTB-IFR中,材料的阻燃性能有所提高,氧指数比没改性时提高了1%左右,I.6 mm样条的垂直燃烧也由UL94V-1级提高到UL94V-0级.对H-BETA分子筛进行改性,添加到RTB-IFR中,阻燃性能也有一定提高,其中负载镍的固体酸的H-BETA分子筛,氧指数达到35.0%,垂直燃烧通过UL94V-0级.力学性能测试表明:改性分子筛对材料的力学性能影响不大.TG测试表明:加入改性分子筛的阻燃剂后,改变了RTB-IFR和PP/RTB-IFR的热降解过程,提高了高温时成炭量和炭层的热稳定性和热绝缘性,使PP/RTB-IFR的阻燃性能得到提高.  相似文献   

9.
采用硅树脂对三嗪系膨胀阻燃剂(IFR)进行表面包覆改性,并通过静态接触角测试对其进行了润湿性能表征。然后将改性前后的IFR分别添加到聚丙烯(PP)中制备了阻燃PP材料,并测试研究了该材料的阻燃性能、力学性能及耐水性。结果表明:当硅树脂的包覆量为5%时,改性IFR的接触角由改性前的0°上升到了151.3°,表现出超疏水性能。与未改性IFR阻燃的PP材料相比,由改性IFR得到的阻燃PP材料,其阻燃性能略有降低,但阻燃剂与聚合物的相容性以及阻燃PP的力学性能有所改善;同时阻燃PP的耐水性能显著提高,其阻燃剂的水抽出率大大降低。当阻燃剂添加量为20%时,未改性IFR阻燃的PP材料,其阻燃剂抽出率为3.71%,且耐水性测试后材料的阻燃性能明显下降;而改性IFR阻燃的PP材料,其阻燃剂抽出率仅为0.38%,且耐水性测试后材料的阻燃性能基本保持不变,表现出优良的耐水性能。  相似文献   

10.
陈超  林志丹  管子现  张秀菊  黄卓遥  李雪  张檬 《塑料》2012,41(3):1-3,98
用两种不同的膨胀型氮磷阻燃剂(IFR1和IFR2)阻燃改性聚丙烯(PP)/聚乳酸(PLA)复合材料。结果表明:两种阻燃剂在PP/PLA基体中都具有良好的分散性和界面粘合性。阻燃剂的加入降低了材料的力学性能,而含有25%阻燃剂的PP/PLA复合材料就能到达垂直燃烧试验(UL-94)的V0等级。燃烧过程中阻燃剂通过在材料表面形成致密的炭层来提高材料的阻燃性,其中IFR1对PP/PLA体系的阻燃改性效果更好。从力学性能和阻燃效果的双重考虑,质量含量25%的阻燃剂适合于PP/PLA材料的阻燃改性。  相似文献   

11.
以新型成炭剂(CFA)、改性聚磷酸铵(MAPP)、乙烯-丙烯酸酯-马来酸酐三元共聚物熔融插层有机蒙脱土(EMH-OMMT)母粒复配成膨胀阻燃剂(IFR),与聚丙烯(PP)共混后通过流延薄膜机制备膨胀阻燃PP薄膜。对其进行了阻燃性能、力学性能测试,并运用热重分析表征了其热分解过程。相比未熔融插层OMMT和传统的4A分子筛协效剂,EMH-OMMT不仅提高了体系的阻燃性能,使薄膜(0.2mm)在IFR添加28%时通过了VTM-0级,而且明显提高了体系的力学性能。  相似文献   

12.
含PEPA/纳米Al(OH)3的膨胀型阻燃聚丙烯研究   总被引:2,自引:0,他引:2  
用磷酰基季戊四醇(PEPA)替代传统的季戊四醇作为炭源,与APP、三聚氰胺复合组成膨胀型阻燃剂(IFR),制备了膨胀型阻燃聚丙烯(IFR-PP)。讨论了阻燃剂对IFR-PP的阻燃性能、力学性能、热稳定性的影响,以反纳米Al(OH)3对该阻燃体系的影响。结果表明:PEPA在阻燃效果上优于季戊四醇,且PEPA对IFR-PP力学性能的影响小于季戊四醇,当PEPR用量为5份,纳米Al(OH)3用量为15份时,阻燃级别达UL-94 V-0级。同时,纳米Al(OH)3的添加使IFR-PP体系阻燃效果得到提高,且对材料的热稳定性反力学性能影响较小。  相似文献   

13.
将自制的超支化三嗪成炭剂(CFA)与聚磷酸铵(APP)以1∶1的比例复配成膨胀型阻燃剂(IFR),用于聚丙烯(PP)的阻燃。采用冲击实验、拉伸实验、极限氧指数仪、垂直燃烧(UL 94)和扫描电子显微镜 (SEM)等方法表征了PP阻燃复合材料的力学性能、阻燃性能,分析了断面形貌。结果表明,添加阻燃剂后,冲击强度呈先增加后降低的趋势,拉伸强度则随着阻燃剂含量的增加不断下降,但降幅不明显;含有15 % IFR的阻燃复合材料,其垂直燃烧等级即可通过UL 94 V-0级测试,显示出复合IFR具有优秀的阻燃效果。  相似文献   

14.
膨胀阻燃剂/蒙脱土协同作用对聚丙烯性能的影响   总被引:3,自引:0,他引:3  
以膨胀型阻燃荆(IFR)为阻燃荆、蒙脱土(MMT)为协效剂、PP-g-MAH为增容剂,对聚丙烯(PP)进行阻燃改性.研究了阻燃剂和协效剂对PP燃烧性能、力学性能和加工性能的影响,并运用热重分析(TGA)和差热分析(DTA)表征了阻燃PP的热降解过程,通过扫描电子显微镜(SEM)观察燃烧残余物的炭层形貌.结果表明,MMT的加入削弱了PP/IFR体系的阻燃性能和力学性能,但在一定程度上解决了体系燃烧时的浓烟现象;当IFR用量为35份时,体系的垂直燃烧性能达到FV-0级,燃烧残余物形成致密的炭层,且具有良好的力学性能和加工性能.  相似文献   

15.
采用含磷钛酸酯偶联(剂PTCA)对由三聚氰胺焦磷酸(盐MPP)和季戊四(醇PER)复配组成的膨胀型阻燃(剂IFR)进行表面改性,并用其制备阻燃聚丙烯(PP)。研究了PTCA用量对PP/IFR共混物力学性能和阻燃性能的影响,并通过热重分析和扫描电镜对共混物进行了表征。结果表明:PTCA有效改善了IFR与PP基体的相容性,提高了PP/IFR共混物的力学性能及阻燃性能。当PTCA用量为1.0%时,共混物的拉伸强度和缺口冲击强度为27.3 MPa和3.2 kJ/m2,分别比未改性的PP/IFR提高了18.7%和6.7%;LOI从未改性PP/IFR的28.5%提高到31.5%,且通过UL94 V-0级;此外,共混物的热稳定性也明显提高,700℃时的残炭率由未改性PP/IFR的8.2%提高到12.1%。  相似文献   

16.
以聚丙烯(PP)为基体树脂、FR–1420为无卤膨胀型阻燃剂,分别加入乙撑双硬脂酰胺(EBS)、聚乙烯(PE)蜡、硬脂酸锌(硬锌)、硅酮及聚偏氟乙烯(PVDF)等五种润滑剂来制备阻燃PP复合材料(PP/IFR),考察了润滑剂及其含量对PP/IFR的阻燃性能和力学性能的影响,并对材料的热分解行为及炭层结构进行了表征和分析。结果表明,FR–1420含量为21%,五种润滑剂含量在0.5%~2%范围内变化时,对PP/IFR复合材料的力学性能影响不大,而对阻燃性能产生了明显影响;EBS与阻燃剂产生对抗作用,不论添加量多少,都显著降低PP/IFR的阻燃性,垂直燃烧等级由V–0级降低至无级;PE蜡、硬锌、硅酮及PVDF的添加量都存在一个最大值,当低于最大值时,不会影响PP/IFR的阻燃性,垂直燃烧等级均为V–0级,而高于最大值时,则会降低PP/IFR的阻燃性;PE蜡、硬锌、硅酮及PVDF均会不同程度延后PP/IFR的起始分解温度,略微降低其成炭率。  相似文献   

17.
邬素华  王丹 《塑料科技》2013,41(2):54-57
通过熔融复合工艺,对聚丙烯(PP)进行阻燃和增韧改性。使用膨胀型阻燃剂(由聚磷酸铵(APP)与季戊四醇(PER)组成)为主阻燃剂,在此基础上研究了4A分子筛对阻燃体系的力学性能、阻燃性能及流变性能等的影响;在PP阻燃体系中加入三元乙丙橡胶(EPDM),探讨了EPDM对PP阻燃体系力学性能和阻燃性能的影响。结果表明:4A分子筛用量为2%、EPDM用量为6%时,阻燃体系的综合性能最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号