首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The solubility limits of MgO in tetragonal zirconia were studied by combining the differential thermal analysis data and X-ray disappearing phase method. From these experiments a eutectoid reaction, tetragonal ZrO2 solid solution monoclinic ZrO2 solid solution + MgO, at 1120±10 °C and 1.6±0.2 mol% MgO was established. The solubility of MgO in tetragonal ZrO2 diminished as the temperature increased, and at 1700 °C the solubility was less than 0.5 mol% MgO. The extent of the cubic zirconia solid solution single field was determined by using precise lattice parameter measurements and SEM observations. In this way an invariant eutectoid point, cubic ZrO2 solid solution tetragonal ZrO2 solid solution + MgO, was located at 1420±10 °C and 14.8±0.5 mol% MgO.  相似文献   

2.
The effects of poly anionic-electrolyte (ammonium polyacrylate, PAA) as a dispersant on two kinds of ZrO2 (monoclinic and yttria-doped tetragonal zirconia) aqueous suspensions were examined by the measurements of-potential and viscosity, the sedimentation test and the determination of the wet point and flow point of the powders. Additions above 2.5 wt% PAA to zirconia gave a negative high-potential above –30 mV, and then –45 and –30 mV were obtained for monoclinic and tetragonal zirconia above 5 wt% PAA, respectively. A high negative-potential above –30 mV was retained with 5 wt% PAA for a change in pH over a wider range (pH 6 to 10 for monoclinic ZrO2, 7 to 9 for tetragonal ZrO2) in comparison to that of ZrO2 without dispersant. The increase of the-potential resulted in a decrease in the viscosity. The evaluation of dispersion by the sedimentation test was correlated well with the value of-potential and the viscosity of the suspensions. The presence of native positive charge of monoclinic and tetragonal zirconia powders required an excess amount of PAA to attain dispersion of the suspension. There was a small difference in the least amount of PAA required to attain good dispersion between monoclinic and tetragonal ZrO2. The difference was also indicated by changes of the flow point on PAA addition. Addition of 0.1% PAA to monoclinic ZrO2 and 0.25 wt% to tetragonal ZrO2 gave a maximum value of the flow point, whereas the positive-potential fell to zero. Measurement of the flow point was a simple and useful technique for rapid evaluation of a required amount of dispersant for ZrO2 suspensions.  相似文献   

3.
Microstructural development in Na-Al2O3 containing 15 vol% ZrO2 particles is described. Intergranular ZrO2 particles inhibit abnormal grain growth of the Na-Al2O3. The growth of the Na-Al2O3 grains and the intergranular ZrO2 followed a cubic time law. Direct particle coalescence consisting of encounter and spheroidizing processes was found to be the basic growth mechanism for the intergranular ZrO2  相似文献   

4.
Zirconia-toughened alumina (ZTA) composites colloidally processed from dense aqueous suspensions (>50 vol% solids) had ZrO2 content varying from 5 to 30 vol%. Tetragonal zirconia (TZ) was used in the unstabilized, transformable form (0Y-TZ), in the partially transformable form, partially stabilized with 2 mol% yttria (2Y-TZ), and in the non-transformable form stabilized with 3 mol% yttria (3Y-TZ). After sintering in air to 99% theoretical density, the elastic properties, flexure strength and fracture toughness were examined at room temperature. Dynamic moduli of elasticity of fully deagglomerated compositions did not show the effects of microcrack formation during sintering, even for materials with unstabilized zirconia. In all compositions made from submicron powders and with low content of dispersed phase (less than 10 to 20 vol %), the strength increased with increasing ZrO2 content to a maximum of 1 GPa, irrespective of the degree of stabilization of t-ZrO2. With increasing content of the dispersed phase (> 20 vol%), heteroflocculation of powder mixtures during wet-processing led to the formation of ZrO2 grain clusters of increasing size. Residual tensile stresses built within cluster/matrix interfaces upon cooling not only facilitated the t-m ZrO2 phase transformation in final composites with transformable t-ZrO2, but also led to lateral microcracking of ZrO2/Al2O3 interfaces. This enhanced fracture toughness, but at larger ZrO2 contents the flexure strength always decreased due to intensive microcracking, both radial and lateral. The important microstructural aspects of strengthening and toughening mechanisms in ZTA composites are related in discussion to the effects of heteroflocculation of powder mixtures during wet-processing.  相似文献   

5.
From co-precipitated powder samples, the solid state reactions occurring between room temperature and 1500° C in the ZrO2-CaO system have been studied. At low temperatures, compositions containing < 25 mol% CaO show a complex picture of phase transformation and ordering in the system. From the obtained results the following singular reactions have been established. (i) Tetragonal zirconia solid solution decomposes eutectoidally at 7 mol% CaO and 1048 ± 4° C into monoclinic zirconia solid solution and calcium zirconate (CZ). (ii) Cubic zirconia solid solution undergoes a eutectoidal decomposition at 17.5 mol% Cao and 1080 ±20° C into tetragonal solid solution + calcium zirconate. (iii) The monoclinic ordered phase, CaZr4O9 (1), ), undergoes an order-disorder transformation into cubic zirconia solid solution at 1232 ± 5° C. (iv) Cubic zirconia solid solution undergoes a eutectoidal decomposition into two ordered phases, 1 + 2 at 21 mol% CaO and 1200 ± 10°C. (v) Hexagonal ordered phase Ca6Zr19O44 (2) decomposes peritectoidally into cubic zirconia solid solution + calcium zirconate at 1360 ± 10° C. The two ordered phases 1 and 2 seem to be unstable below 1100° C. By using DTA, X-ray diffraction and SEM techniques, the extent of the tetragonal and cubic zirconia solid solution fields have been established. From the above experimental results a new tentative phase diagram is given for the ZrO2-rich region of the system, ZrO2-CaO.  相似文献   

6.
Al2O3-SiC-ZrO2 composites were investigated to obtain a better understanding of the effect of SiC particles and the stress-induced transformation of Y-TZP on its mechanical properties. The Al2O3-SiC-ZrO2 composites were fabricated by hot pressing using -Al2O3, SiC and ZrO2 mixtures. Fracture toughness and strength of Al2O3 were greatly improved by incorporating SiC and ZrO2 particles which were located mainly inside and between Al2O3 grains, respectively. The toughening and strengthening mechanism of these composites and the phase stability of the tetragonal ZrO2 in the composites before and after high-temperature annealing were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. It was observed that there is a critical volume fraction of zirconia, above which the phase stability of the tetragonal zirconia increases, despite the grain growth of the zirconia. It is considered that another phenomenon, the residual stresses, affect the phase stability of the tetragonal zirconia. To remove the residual stresses the composites were annealed at 1100 °C. After slow cooling, the tetragonal zirconia became very unstable, especially in samples with the highest fabrication temperature and increasing zirconia content. Even quenching from 1100 °C caused an increase in the monoclinic phase of these samples.  相似文献   

7.
The interface of Ti-6Al-4V casting and ZrO2 mold with silica binder was investigated by using electron probe microanalyses (EPMA), X-ray diffraction (XRD), and analytical transmission electron microscope (TEM). The interfacial reactions were proceeded by the penetration of liquid titanium through open pores near the mold surface. The metal side consisted of an -phase layer on the top of the typical + two-phase substrate. In the ceramic side, zirconia was reduced by titanium to form oxygen-deficient zirconia ZrO2–x and evolved a gaseous phase (presumably oxygen). The SiO2 binder, dissolved in the ZrO2 mold, could react with titanium to form Ti5Si3 in the metal side. Meanwhile, titanium could transform to titanium suboxides TiyO (y 2) and the lower phase boundary of cubic ZrO2–x was shifted to ZrO1.76. Some amount of the stabilizer CaO, dissolved in Ti along with ZrO2, could react with Ti(O) to form Ca3Ti2O7 and CaAl4O7 in the reaction zone.  相似文献   

8.
The search for more reliable and durable thermal barrier systems is a key factor for future aircraft turbine engines success. Hafnia is therefore an attractive ceramic component due to its similarity to zirconia and its elevated structural transformation temperatures. We report here structural and thermomechanical investigations of various plasma-sprayed coatings composed of ZrO2+x mol% HfO2 (x=0, 25, 50 and 100), partially stabilized by 4.53 mol% yttria. X-ray diffraction studies show that, a metastable, non-transformable, high yttrium content, tetragonal solid solution is the only phase observed on the as-sprayed samples. This phase is crystallographically equivalent to the t phase described for classical yttrium-partially stabilized zirconia (Y-PSZ) thermal barrier coatings (TBCs). Upon high-temperature annealing in air (T=1200C), however, the return of this t phase to equilibrium differs from the classical tt+c reaction. According to literature data, reactions of the type tt+c+m should prevail at the highest hafnia contents (x50). Indeed, important quantities of monoclinic phase are accordingly being observed upon cooling. Thermal cycling of TBC samples in air has been performed at 1100C. The Young's modulus of the ceramic coating, which progressively increases when hafnia is substituted for zirconia, has a strong influence on TBC thermomechanical resistance.  相似文献   

9.
Al2O3/ZrO2 composites have been prepared by fast firing of oxidized Al/Al2O3/ZrO2 precursors produced by the reaction-bonded aluminium oxide (RBAO) technique. This fabrication route results in high-strength ceramics at relatively low densities. For example, after fast firing for 20 min at 1550 °C, RBAO containing 20 vol% ZrO2 shows four-point bending strengths of > 600 MPa at a density of 95% theoretical which is comparable to conventionally sintered RBAO.  相似文献   

10.
X-ray diffraction and electron-microscopic studies demonstrate that the conditions of ZrB2 rf magnetron sputtering (primarily, the argon pressure) have a significant effect on the thickness, phase composition, and structure of the growing films. The films deposited on silicon substrates at low argon pressures (0.15–0.18 Pa) consist of zirconium diboride and a very thin zirconia layer. At higher argon pressures, from 0.21 to 0.42 Pa, the film thickness is larger, and the film is composed of four layers: ZrB2/ZrB/ZrO2/B2O3. Increasing the argon pressure to 0.47 Pa, reduces the deposition rate and the thickness of the zirconia layer. The resultant films contain neither ZrB nor B2O3. At still higher argon pressures, up to 0.65 Pa, film thickness continues to decrease because of the reduction in the thickness of the ZrB2 layer. The substrate temperature influences the structural perfection of the growing films. Other sputtering parameters influence the argon pressure and, accordingly, the phase composition of the films. At deposition temperatures of 60–70°C, there are certain orientational relationships between the films and single-crystal substrates. On glass-ceramic substrates, the deposition rate is substantially faster, and the deposits consist of randomly oriented crystallites.  相似文献   

11.
Duplex spinel-ZrO2 ceramic composites were produced by an emulsion-hot kerosene drying technique. The sintered duplex spinel-ZrO2 ceramics which had the composition of 55 wt% Al2O3-20 wt% ZrO2-25 wt% MgO, consisted of a spinel matrix, whose grain size was in the range of 1.5 to 2.0 m, and uniformly dispersed zirconia agglomerates having grain sizes ranging from 1.0 to 2.0 m. Zirconia agglomerates began to appear at a temperature of 1500 °C and the duplex spinel-ZrO2 structure was formed with the weight ratio of Al2O3/MgO being within 1.67 to 2.20 and the amount of ZrO2 addition being within 5 to 25 wt %. The relative density, fracture toughness, flexural strength, and critical temperature difference of the spinel-ZrO2 composite were 97.8%, 1.98 MPam0.5, 390 MPa, and 275 °C, respectively.  相似文献   

12.
Beta alumina ceramic electrolytes for use in Na/S batteries are inherently weaker than most engineering ceramics due to the presence of weakly-bonded conduction planes in the crystal structure and to difficulties in controlling grain growth during firing. Substantial improvement in microstructural control is obtained by incorporation of monoclinic zirconia (m-ZrO2) or partially stabilized zirconia (PSZ) resulting in increases in strength and fracture toughness to around 350 MPa and 4 MPam1/2, respectively. PSZ may adversely influence the electrical resistivity of the ceramic owing to the presence of impurities. With most zirconia powders a high level of retention of tetragonal zirconia (t-ZrO2) is obtained at levels of addition up to 15% by weight ZrO2. At these levels ZrO2/-Al2O3 ceramics show low resistivity and stable resistance in Na/S cells.  相似文献   

13.
The modulated structure produced by isothermal ageing of ZrO2-5.2 mol % Y2O3 alloy was examined mainly by electron microscopy. It was found that the modulated structure was formed at ageing temperatures between 1400 and 1600° C, but not at 1700° C. The structure is developed by spinodal decomposition, which produces compositional fluctuation in the elastically soft 111 direction in cubic zirconia. The hardness increase caused by the development of modulated structure during ageing is larger than the hardening by precipitation of tetragonal phase in the cubic matrix.Graduate Student, Tohoku Univerisy, Sendai, Japan.  相似文献   

14.
Composites of hydroxylapatite (HA) with pure zirconia, and 3 and 8% Y2O3 in zirconia, were pressure-less sintered at temperatures from 900 to 1300C, and hot-pressed at 1200C in argon gas atmosphere for 1 h. The reactions and transformations of phases were monitored with X-ray diffraction and thermal analysis. At sintering temperatures higher than 1000,C, calcium from HA diffused into the zirconia phase, and the HA phase decomposed to tri-calcium phosphate (TCP). Above about 1200,C, CaZrO3 was formed. These reactions and transformations were interpreted in terms of the ZrO2-CaO phase diagram. On the other hand, zirconia and hydroxylapatite phases in hot pressed composite remained mainly stable suggesting that air in the sintering environment increased the reactivity between the phases. The highest densification was found in a composite initially containing 10% monoclinic ZrO2 sintered at 1300,C. The densification of the composites decreased at lower sintering temperatures and higher zirconia contents upon air-sintering.  相似文献   

15.
Studies on the subcritical crack growth behaviour of partially stabilized zirconia (ZrO2-I, 5 to 10 vol% tetragonal phase; ZrO2-II, 35%) were carried out using the double-torsion technique and data from the dynamic fatigue of unnotched bend specimens. The results of subcritical crack growth support the model of stress induced transformation from the tetragonal to monoclinic modification. Differences in the crack growth parameter n (as-received condition) using the double-torsion technique or bend specimens may be explained by the special nature of subcritical crack extension at stressed surfaces for these different specimen types. The log v-log K i plot of ZrO2-I using the double torsion technique shows a plateau of constant velocity, which has to be attributed to a tetragonal-monoclinic transformation. After annealing (1500° C, 5 h) the plateau has vanished and the n value is comparable to bend test in an as-received condition.  相似文献   

16.
The compound 12CaO · 7Al2O3 has been widely studied for a long time. There are many controversies concerning its polymorphism and other properties in the literature. The variable conditions of synthesis, i.e. Temperature, atmosphere, as well as the different cooling rate conditions allowed us to obtain an optically anisotropic polymorphic modification of the 12CaO · 7Al2O3 in vacuum. X-ray investigation of that anisotropic phase indicated that the d-values (in nm) of the diffraction maxima did not correspond to that of the isotropic cubic phase presented in the literature. The polymorphic transition temperature was determined and reported earlier. SEM observations shed new light on the 12CaO · 7Al2O3 polymorphism problem. A sample of CaO/Al2O3 of weight ratio 0.94, which has been synthesized and cooled in air, was examined under the scanning electron microscope. The sample was exposed to electron beam action for 20 min. In the dark spots formed during this operation, bulges appeared which then enlarged and cracked. On the surface a transverse crack was visible. This phenomenon could also be observed in other areas of the sample surface during exposure. This phenomenon is connected presumably with the polymorphic transition of the 12CaO · 7Al2O3 phase.  相似文献   

17.
The phase relationships over a wide range of temperature and compositions in the ZrO2-CeO2 system have been reinvestigated. From DTA results, thermal expansion measurements andK IC determinations it was established that additions of CeO2 to ZrO2 decreases the monoclinic to tetragonal ZrO2 transition temperature, from 990 ° C to 150 50 ° C, and an invariant eutectoid point at approximately 15 mol% CeO2 exists. The extent of the different single- and two-phase fields were determined with precise lattice parameter measurements on quenched samples. Evidence for the existence of a binary compound Ce2Zr3O10 (ø-phase) was obtained by X-ray diffraction. The ø-phase was stable below approximately 800 ° C, above which it decomposes into tetragonal zirconia + fluorite ceria solid solutions. Taking into account the polymorphic tetragonal-cubic transition and the narrowness of the two-phase tetragonal zirconia + fluorite ceria field above 2000 ° C, the existence of a new invariant eutectoid point was assumed, in which the metastable fluorite zirconia solid solution decomposes into tetragonal zirconia + fluorite ceria solid solutions. From the results obtained, the phase diagram also incorporates a eutectic point located at approximately 2300 ° C and 24 mol % CeO2.  相似文献   

18.
The stability of -alumina reinforced with 10 vol% of tetragonal partially stabilized 3 mol% Y2O3-ZrO2 (3Y-ZrO2) and with 10 vol% of cubic 8 mol% Y2O3-ZrO2 (8Y-ZrO2) in molten sulfur or molten Na2S4 has been examined using scanning electron microscopy (SEM) X-ray diffraction (XRD) and electron probe microanalysis (EPMA) both before and after immersion at 350 °C. Tetragonal partially stabilized 3 mol % Y2O3-ZrO2 was destabilized when reinforced into -alumina and immersed in molten Na2S4. Destabilization without incorporation into -alumina or using molten S as the immersion medium was minor. EPMA analyses indicated that the presence of -alumina enhanced zirconia destabilization in that -alumina can react with the molten corrodants to form corrosion products which are known corrosion agents for the leaching of Y2O3 from partially stabilized 3Y-ZrO2. From XRD analyses, changing from partially stabilized 3Y-ZrO2 to cubic 8Y-ZrO2 in the composite increased resistance against phase destabilization. EPMA analyses revealed that the depletion was almost halted for cubic 8Y-ZrO2 suggesting that the change in the zirconia phase used had reduced the chemical reactivity between Y2O3 and the corrodants. In order to avoid depletion destabilization of zirconia in -alumina, corrosion resistance can be increased by reducing chemical reactivity by using fully stabilizing zirconia. In addition, partially stabilized tetragonal zirconia may still be considered for use if a less reactive stabilizer such as CeO2 is used.  相似文献   

19.
The objective of the study was to develop a biocompatible composite system which was composed of TZP-ceramic (tetragonal zirconia polycrystals, ZrO2 stabilized with 3 mol% Y2O3) and two glass-ceramics of the SiO2–Li2O–ZrO2–P2O5 type. The metal-free composite system would satisfy the translucency, the biocompatibility and the strength requirements of dentistry. The two glass-ceramics of the SiO2–Li2O–ZrO2–P2O5 type with a content of 15 and 20 wt% ZrO2 respectively, were chemically and physically adapted to TZP-ceramic. The glass-ceramics were used as a dentin buildup material. The TZP-ceramic had the function of a root post. The shape of the post was cylindrical with a conical tip. The composite system was easy to process through viscous flow of the glass-ceramic at 900 and 1000°C, respectively. The microstructure and the mechanical properties of two glass-ceramics of the SiO2–Li2O–ZrO2–P2O5 type were examined therefore.  相似文献   

20.
States of anelastic strain can be associated with excess concentrations of point defects, as generated by mass transport in a sintering compact. Correspondingly, states of mechanical long-range self-equilibrated stresses (autostresses) can be produced. The relationships between anelastic strain and autostresses have been derived for a two-particle model. A generalized relation between chemical potentials and autostresses, including surface stresses, is provided, which allows derivation of local thermodynamic driving forces for mass transport. The concept of equivalent external sintering stress, assumed to be the driving force for the global densification process, is shown to correspond, approximately, to the material- and history dependent normal autostress component acting on the neck cross-sections. Predictions made from the model provide a new interpretation of experimental observations of the effect of gaseous phases, such as H2O and CO2, on the sintering of MgO and CaO powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号