首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以光伏电池和Boost变换器构成的光伏系统为例,考虑实际电路元件的非理想参数,建立了含Boost变换器光伏系统的精确数学模型,研究了非理想参数对光伏系统最大功率追踪(MPPT)的影响, 并通过Simulink仿真及dSPACE试验验证。结果表明,当电路中存在非理想参数时,MPPT追踪的占空比和直流母线电压均会受到影响,也有可能会对原电路产生严重影响,甚至导致电路无法正常工作,因此在进行电路设计时一定要考虑电路非理想参数的影响,由此验证了理论分析的正确性。  相似文献   

2.
针对阴影遮挡状态串联光伏组件P-U曲线多峰问题,在等效模型基础上引入Lambert W函数进行推导,给出一种基于直线方程求解过零电压值的单峰MPPT算法;同时对不同遮挡状态下串联光伏组件的波峰数量及分布规律进行研究,获得一种波峰区间的划分方法;进而将两者结合,提出一种串联光伏组件多峰MPPT算法。通过建模仿真和搭建实验平台,针对不同材质的单块光伏组件进行光照条件变化仿真实验和误差分析;针对串联光伏组件(组串)进行不同遮挡状态实验验证和误差分析。结果表明,该方法能快速准确地计算出组件单峰或组串多峰的最大功率点,具有良好的工程应用前景。  相似文献   

3.
为提高光伏阵列的能量利用率,提出了一种基于动态阻抗匹配(DIM)和两步模型预测控制(MPC)的最大功率点跟踪(MPPT)算法,首先建立光伏状态空间方程,计算当前时刻光伏系统动态阻抗并预测下一时刻外部阻抗,然后定义成本函数构建两步模型预测控制器,预测开关管状态控制DC/DC电路内部阻抗接近外部阻抗,从而实现光伏发电系统快速和稳定地输出最大功率,并通过Matlab/Simulink软件建立仿真模型进行验证。结果表明,该算法可行、有效,且大幅提高了光伏系统最大功率跟踪的快速性和稳定性。  相似文献   

4.
为解决局部阴影下光伏阵列采用传统最大功率点跟踪(MPPT)易陷入多峰值的局部最优点问题,采用分布式构架的光伏阵列,提出了一种基于遗传粒子群(GA-PSO)的MPPT混合算法,GA-PSO算法结合了粒子群算法(PSO)的位置转移和遗传算法(GA)的全局搜索能力,使混合算法拥有比GA算法和PSO算法更好的追踪准确性和快速性。在MATLAB/Simulink平台上建立了基于GA-PSO的分布式最大功率跟踪控制(DMPPT)电路拓扑结构的光伏阵列仿真模型,仿真结果验证了所提算法的可行性和有效性,为MPPT技术改进提供一种参考方案。  相似文献   

5.
This paper proposes maximum photovoltaic power tracking (MPPT) for the photovoltaic (PV) array using the fractional-order incremental conductance method (FOICM). Since the PV array has low conversion efficiency, and the output power of PV array depends on the operation environments, such as various solar radiation, environment temperature, and weather conditions. Maximum charging power can be increased to a battery using a MPPT algorithm. The energy conversion of the absorbed solar light and cell temperature is directly transferred to the semiconductor, but electricity conduction has anomalous diffusion phenomena in inhomogeneous material. FOICM can provide a dynamic mathematical model to describe non-linear characteristics. The fractional-order incremental change as dynamic variable is used to adjust the PV array voltage toward the maximum power point. For a small-scale PV conversion system, the proposed method is validated by simulation with different operation environments. Compared with traditional methods, experimental results demonstrate the short tracking time and the practicality in MPPT of PV array.  相似文献   

6.
Photovoltaic(PV) systems are adversely affected by partial shading and non-uniform conditions. Meanwhile, the addition of a bypass shunt diode to each PV module prevents hotspots. It also produces numerous peaks in the PV array’s power-voltage characteristics, thereby trapping conventional maximum power point tracking(MPPT) methods in local peaks.Swarm optimization approaches can be used to address this issue. However, these strategies have an unreasonably long convergence time. The Grey Wolf Op...  相似文献   

7.
光伏发电系统处于复杂光照条件下时,光伏电池阵列的输出特性呈多峰现象,致使传统的MPPT算法追踪结果可能停留在次优点。针对此问题,提出一种基于电压预估法的光伏发电系统MPPT算法,采用DMPPT电路结构的光伏阵列,通过研究其输出特性,得到复杂光照条件下光伏阵列最大功率点对应的工作电压最佳区域,并以该预估到的电压值为基础,设计了一种新型的MPPT控制算法。仿真结果表明,所提算法能有效避免光伏系统工作在次优点,提高了光伏发电的出力。  相似文献   

8.
This paper proposes a comprehensive MATLAB Simulink simulator for photovoltaic (PV) system. The simulator utilizes a new two-diode model to represent the PV cell. This model is known to have better accuracy at low irradiance level that allows for a more accurate prediction of PV system performance during partial shading condition. To reduce computational time, only four parameters are extracted for the model. The values of Rp and Rs are computed by an efficient iteration method. Furthermore, all the inputs to the simulators are information available on standard PV module datasheet. The simulator supports a large array combination that can be interfaced to MPPT algorithms and power electronic converters. The accurateness of the simulator is verified by applying the model to five PV modules of different types (multi-crystalline, mono-crystalline, and thin-film) from various manufacturers. It is envisaged that the proposed work can be very useful for PV professionals who require simple, fast, and accurate PV simulator to design their systems. The developed simulator is freely available for download.  相似文献   

9.
Maximum power point trackers (MPPTs) have a decisive role to extract power from the photovoltaic (PV) generators as they have to assume the maximum power output (MPP) whatever are the continuous changes of temperature and irradiation conditions. Therefore, they take a prior place in the global PV system efficiency. These trackers are driven by MPPT algorithms and lot of these MPPT algorithms are proposed in literature. The two most common implemented algorithms for power optimisation are the Perturb and Observe (P&O) and the Incremental of Conductance (IncCond) algorithms, which present a high simplicity of implementation within electronics programmable circuits. With an approach based on realistic parameters such as those found when the generator is integrated in a real photovoltaic installation, the two MPPT techniques are dynamically compared using testing procedures developed with Matlab/Simulink. The study leads us to conclude that both algorithms can be performed for PV exposures in unfavourable but realistic external conditions.  相似文献   

10.
This paper presents implementation of particle swarm optimization (PSO) algorithm as a C-Mex S-function. The algorithm is used to optimize a 9-rule fuzzy logic controller (FLC) for maximum power point tracking (MPPT) in a grid-connected photovoltaic (PV) inverter. The FLC generates DC bus voltage reference for MPPT. A digital PI current control scheme in rotating dq-reference frame is used to regulate the DC bus voltage and reactive power. The proposed technique simplifies optimal controller design and ensures fast simulation speeds due to seamless integration with the simulation platform. Validity of the proposed method was verified using co-simulation in PSIM and MATLAB/Simulink. Simulation results show that the optimized FLC gives a better performance compared to fixed-step MPPT.  相似文献   

11.
Maximum power point traking controller for PV systems using neural networks   总被引:2,自引:0,他引:2  
This paper presents a development and implementation of a PC-based maximum power point tracker (MPPT) for PV system using neural networks (NN). The system consists of a PV module via a MPPT supplying a dc motor that drives an air fan. The control algorithm is developed to use the artificial NN for detecting the optimal operating point under different operating conditions, then the control action gives the driving signals to the MPPT. A PC is used for data acquisition, running the control algorithm, data storage, as well as data display and analysis. The system has been implemented and tested under various operating conditions.The experimental results showed that the PV system with MPPT always tracks the peak power point of the PV module under various operating conditions. The MPPT transmits about 97% of the actual maximum power generated by the PV module. The MPPT not only increases the power from the PV module to the load, but also maintains longer operating periods for the PV system. The air velocity and the air mass flow rate of the mechanical load are increased considerably, due to the increase of the PV system power. It is also found that, the increase in the output energy due to using the MPPT is about 45.2% for a clear sunny day.  相似文献   

12.
In this work we report on the design and realization of a maximum power point tracking (MPPT) circuit suitable for low power, portable applications with resistive load. The design rules included cost, size and power efficiency considerations. A novel scheme for the implementation of the control loop of the MPPT circuit is proposed, combining good performance with compact design. The operation and performances were simulated at circuit schematic level with simulation program with integrated circuit emphasis (SPICE). The improved operation of a PV system using our MPPT circuit was demonstrated using a purely resistive load.  相似文献   

13.
In photovoltaic (PV) system, the most commonly used DC/DC converter is the basic buck or boost circuit to implement the maximum point power tracking (MPPT) due to their simple structure and low cost while there are some MPPT constraint conditions. By contrast, the conventional buck/boost DC/DC converter without MPPT constraint condition is seldom used because of its high cost or poor performance. To keep the advantages of these three DC/DC converters while overcoming their shortcomings, in this paper, the constraint conditions of capturing the maximum power point (MPP) of PV systems with direct-current (DC) bus are found out. Then, on the basis of this work, a MPPT control strategy with variable weather parameters is proposed. In this strategy, a new buck/boost DC/DC converter is proposed, which not only avoids the MPPT constraint conditions of basic buck or boost DC/DC converter but also overcomes the shortcomings of conventional buck/boost DC/DC converter. Finally, lots of simulated experiments verify the accuracy of MPPT constraint conditions, test the feasibility and availability of proposed MPPT control strategy, analyze the MPPT performance of proposed PV system and compare the output transient-state performance with conventional perturb and observe (P&O) method.  相似文献   

14.
This paper presents experimental evaluations for variation in the efficiency of energy extracted from a photovoltaic (PV) module (under non-linear loading) incorporated with an incremental conductance(IC) maximum power point tracking (MPPT) algorithm. The focus is on the evaluation of the PV panel under non-linear loading conditions using the experimental installation of a 100Wp photovoltaic array connected to a DC–DC converter and a KVA inverter feeding a non-linear load. Under the conditions of non-linear loading, both the simulation and experiment show that the MPPT technique fails to attain maximum power point due to the presence of ripples in the current leading eventually to a reduction in efficiency. In this paper, panel current is taken as a function of load impedance in the MPPT algorithm to eradicate power variation, as load impedance varies with supply voltage under non-linear conditions. The system is simulated for different non-linear loads using MATLAB-Simulink. A TMDSSOLAREXPKIT was used for MPPT control. In case 2, the inverter is connected to a single phase grid. When a voltage swell occurs in the grid, PV power drops. This power loss is reduced using the proposed MPPT method. The results of simulations and experimental measurements and cost efficiency calculations are presented.  相似文献   

15.
This paper discusses operation performance of a water pumping system consist of a brushless dc (BLDC) motor coupled a centrifugal pump and accompanying a Z-source inverter (ZSI) fed by a photovoltaic (PV) array, to be improved. Despite conventional double-stage power converters, this paper proposes utilizing a single-stage ZSI to extract the maximum power of the PV array and supply the BLDC motor simultaneously. Utilizing the ZSI provides some inherent advantages such as high efficiency and low cost, which is very promising for PV systems due to its novel voltage buck/boost capability. In addition, in order to precisely perform the maximum power point tracking (MPPT) of the PV array the fuzzy logic-incremental conductance (FL-IC) MPPT scheme is proposed. The proposed FL-IC MPPT scheme provides enough modification to the conventional IC method to enjoy an appropriate variable step size MPPT control signal for the ZSI. Moreover, direct torque control (DTC) is found more effective in comparison with hysteresis current control with current shaping to drive the BLDC motor, because it benefits from faster torque response, reduced torque ripple, less sensitivity to parameters variations, and simple implementation. In the mean time, due to the frequently variations of the PV power generation; delivered mechanical power to the centrifugal pump is variable. Thus, the BLDC motor should be driven with variable reference speed. In order to improve the speed transient response of the BLDC motor and enhance the energy saving aspect of the system, it should enjoy a high quality dynamic response characteristic. Therefore, to realize these purposes, particle swarm optimization (PSO) has been proposed to regulate the proportional-integral-derivative (PID) parameters of the BLDC motor speed controller. The system configuration, operation principle and control methods are presented in detail. Finally, the proposed system was simulated in different operation conditions of the PV array by computer simulations and the effectiveness of the proposed control strategies has been validated by comparative studies and simulation results.  相似文献   

16.
Due to the PV module simulation requirements as well as recent applications of model-based controllers, the accurate photovoltaic (PV) model identification method is becoming essential to reduce the PV power losses effectively. The classical PV model identification methods use the manufacturers provided maximum power point (MPP) at the standard test condition (STC). However, the nominal operating cell temperature (NOCT) is the more practical condition and it is shown that the extracted model is not well suited to it. The proposed method in this paper estimates an accurate equivalent electrical circuit for the PV modules using both the STC and NOCT information provided by manufacturers. A multi-objective global optimization problem is formulated using only the main equation of the PV module at these two conditions that restrains the errors due to employing the experimental temperature coefficients. A novel combination of a genetic algorithm (GA) and the interior-point method (IPM) allows the proposed method to be fast and accurate regardless the PV technology. It is shown that the overall error, which is defined by the sum of the MPP errors of both the STC and the NOCT conditions, is improved by a factor between 5.1% and 31% depending on the PV technology.  相似文献   

17.
Over the past few decades, the world demand for energy has risen steadily, forcing the world communities to look for alternative sources. Photovoltaic (PV) is seen as the most promising solution for this demand. However, the PV system is popularly known to suffer from low‐energy harvesting due to the change of environment conditions. An inexpensive and practical solution to extract the energy from the PV is by improving the maximum power point tracking (MPPT) controller technique. An ideal MPPT should be able to track the true maximum power operating point accurately under all circumstances and overcome all nonlinearities in the characteristic I‐V curves. This paper presents an updated review of the techniques based on the perturbative MPPT methods, both using the conventional and soft computing methods. The working principles of the techniques, parameter effects, and their limitations are discussed. The focus of this review is to direct the readers to the new direction of MPPT using the artificial intelligence and evolutionary computation techniques. Besides serving as a comprehensive source of information, the paper also provides a critical review on the relative performance of the selected MPPT methods. This includes the module dependency, tracking performance, and the ability to handle the partial shading conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A PV pumping system using switched reluctance motor (SRM) is thoroughly investigated in this work. This motor is supplied by a d.c. voltage through a simple switching circuit. This drive circuit is much simpler than the normal d.c./a.c. inverter required to supply the induction motor. The efficiency of this motor is considerably higher than that of the equivalent d.c. or induction motors. In addition, because of the simple construction, SRM is cheaper than these conventional drives. Because of the above advantages of the SRM, the proposed system has higher efficiency and lower cost as compared with other systems.A design example is studied in detail to explore the advantages of PV pumping systems based on this new drive. The study of the performance of the proposed system showed that the operating efficiency of the motor is about 85% during most of its working time. The matching efficiency between the PV array and the proposed system approaches 95%. The major part of the losses takes place in the pump and the riser pipes, this loss represents one-third of the total available energy.  相似文献   

19.
Last issues about Building Integrated Photovoltaic Systems (BIPV) still show average Performance Ratio (PR) values in the range of 0.75–0.80. The main causes well known: partial shadows, temperature effects, PV inverter losses, thermal losses, etc. and mismatching losses. Ideally, all the modules work in the same conditions, but differences between modules really exist due to differences in the working temperature, the inclination or orientation angles, differences in the IV characteristic coming from the manufacturing process, etc. The effect is that the output power of the complete PV system is lower than the addition of the power of each PV module.These mismatching losses can be decreased by means of suitable electronics. This paper presents the experimental results obtained over PV systems equipped with controlled PV modules, PV modules with low cost and high efficiency DC–DC converters, including MPPT algorithm and other functions, such as power control and Power Line Communications (PLC).Tests have been divided into two great categories: tests on the electronic performance of the DC–DC converter and tests on grid-connected PV systems with multiple DC–DC converters. Many of these tests have been carried out taking advantage of the PV System Test Platform, a powerful tool especially designed by Robotiker to evaluate all kind of PV systems, especially systems with differences between modules. Aspects of the DC–DC converter performance have been detailed and among the most important experiments, the paper analyses different situations such as partial shadows, different inclined planes, PV systems with different PV modules, and finally a comparison between a conventional system and a system composed by controlled PV modules have been described. To sum up, the importance of a good system dimensioning is analysed, with very interesting results.  相似文献   

20.
Kashif Ishaque 《Solar Energy》2011,85(9):2349-2359
To accurately model the PV module, it is crucial to include the effects of irradiance and temperature when computing the value of the model parameters. Considering the importance of this issue, this paper proposes an improved modeling approach using differential evolution (DE) method. Unlike other PV modeling techniques, this approach enables the computation of model parameters at any irradiance and temperature point using only the information provided by the manufacturer’s data sheet. The key to this improvement is the ability of DE to simultaneously compute all the model parameters at different irradiance and temperature. To validate the accuracy of the proposed model, three PV modules of different types (multi-crystalline, mono-crystalline and thin-film) are tested. The performance of the model is evaluated against the popular single diode model with series resistance Rs. It is found that the proposed model gives superior results for any irradiance and temperature variations. The modeling method is useful for PV simulator developers who require comprehensive and accurate model for the PV module.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号