首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology and mechanical properties of polycarbonate (PC) blends with rubber‐toughened styrene–maleic anhydride copolymer materials (TSMA) were investigated and compared with the properties of blends of PC with acrylonitrile–butadiene–styrene (ABS) materials. The PC/TSMA blends showed similar composition dependence of properties as the comparable PC/ABS blends. Polycarbonate blends with TSMA exhibited higher notched Izod impact toughness than pure PC under sharp‐notched conditions but the improvements are somewhat less than observed for similar blends with ABS. Since PC is known for its impact toughness except under sharp‐notched conditions, this represents a significant advantage of the rubber‐modified blends. PC blends with styrene–maleic anhydride copolymer (SMA) were compared to those with a styrene–acrylonitrile copolymer (SAN). The trends in blend morphology and mechanical properties were found to be qualitatively similar for the two types of copolymers. PC/SMA blends are nearly transparent or slightly pearlescent. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1508–1515, 1999  相似文献   

2.
The effects of blend composition, melt viscosity of poly(acrylonitrile-butadiene-styrene) (ABS), and compatibilizing effect of poly(methyl methacrylate) (PMMA) on mechanical properties of ABS/polycarbonate (PC) blends at ABS-rich compositions were studied. As the content of PC was increased, impact strength and Vicat softening temperature (VST) were increased. As the melt viscosity of ABS was increased near to that of PC, finer distribution of dispersed PC phase and consequent enhanced impact strength and VST were observed. The compatibilizing effect of PMMA can be ascer-tained from the enhanced properties of ¼-inch notch impact strength, VST, tensilestrength, and the morphology observed by a scanning electron microscope. The improved adhesion of the ABS/PC interface by PMMA changed the fracture mechanism and reduced the notch sensitivity of blends. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 533–542, 1998  相似文献   

3.
The morphologies and physical properties of twin-screw-extruded polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) blends with various blend ratios are studied. The needle-like co-continuous phase in PC-rich blends changes to the sea-island phase for blend ratios of more than 50 wt% ABS. While pure PC exhibits an almost-Newtonian flow behavior, PC/ABS blends exhibit the interesting rheological transition. The viscosities of the ABS-rich blends at low shear rates are almost equal to those of the pure ABS polymer. The yield stress for the PC/ABS blend ratio of 3:7 is the highest in composition. At the frequency of 10 rad/s, the PC-rich blends exhibit highly viscous properties, whereas the ABS-rich blends present highly elastic properties as the temperature increases. Moreover, the ABS polymer in the PC/ABS polymer blend induces significant change at the fracture surface of PC, transitioning from brittle to ductile nature.  相似文献   

4.
The effects of a compatibilizer, namely, an acrylonitrile–butadiene–styrene copolymer (ABS) grafted with maleic anhydrade (MAH) (ABS‐g‐MAH), on the mechanical properties and morphology of an ABS/polycarbonate (PC) alloy were studied The results showed that a small quantity of ABS‐g‐MAH has a very good influence on the notched Izod impact strength of the ABS/PC alloy without compromising other properties such as the tensile strength, flexural strength, and Vicat softening temperature (VST). The impact strength of the ABS/PC alloy, to a great extent, depends on the loading of ABS‐g‐MAH and the degree of grafting (DG) of MAH in the ABS‐g‐MAH. DSC analysis and SEM observation confirmed that ABS‐g‐MAH could significantly improve the compatibility of the ABS/PC alloy. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 831–836, 2001  相似文献   

5.
ABSTRACT

The effect of rubber content of poly (acrylonitrile butadiene styrene) (ABS) on compatibility and properties of polycarbonate (PC)/ABS blend systems has been investigated. The rheological, mechanical, physical, and thermal properties of PC/ABS blend systems containing ABS of different rubber content were studied. The reduced torque data on Torque Rheocord indicated improved processability of PC by addition of ABS, however, in ABS-rich compositions, higher rubber content reduces the extent of improvement. The tensile strength of PC decreased with addition of ABS to it but PC-rich compositions have a nearly additive response. The deviation form additivity for blends having higher rubber ABS was more pronounced. However, the impact strength of blends having higher rubber ABS were higher than other types and showed a positive deviation from additivity with variation in compositions. The blends containing ABS with lower rubber content showed a single glass-transition temperature (Tg) in differential scanning calorimetry studies (DSC) in the whole composition range indicating miscibility. Although two Tgs, one associated with PC phase and one with ABS phase, were observed for blends containing high rubber ABS, the shift in Tgs with respect to pure component values indicates partial miscibility. The decrease in the extent of shift with increase of ABS in these blends indicates undesirable phase separation due to poor adhesion of higher level of rubber content.  相似文献   

6.
Ternary in situ polycarbonate (PC)/poly(acrylonitrile‐butadiene‐styrene) (ABS)/liquid crystalline polymer(LCP) composites were prepared by injection molding. The LCP used was a versatile Vectra A950, and the matrix of composite specimens was PC/ABS 60/40 by weight. Maleic anhydride (MA) copolymer and solid epoxy resin (bisphenol type‐A) were used as compatibilizers for these composites. The tensile, dynamic mechanical, impact, morphology, and thermal properties of the composites were studied. Tensile tests showed that the tensile strength of the PC/ABS/LCP composite in the longitudinal direction increased markedly with increasing LCP content. However, it decreased slowly with increasing LCP content in the transverse direction. The modulus of this composite in the longitudinal direction appeared to increase considerably with increasing LCP content, whereas the incorporation of LCP into PC/ABS blends had little effect on the modulus in the transverse direction. The impact tests revealed that the Izod impact strength of the composites in both longitudinal and transverse direction decreased with increasing LCP content up to 15 wt %; thereafter it increased slowly with increasing LCP. Dynamic mechanical analyses (DMA) and thermogravimetric measurements showed that the heat resistance and heat stability of the composites tended to increase with increasing LCP content. Scanning electron microscopy observation and DMA measurement indicated that the additions of epoxy and MA copolymer to PC/ABS matrix appeared to enhance the compatibility between the PC and ABS, and between the matrix and LCP. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2274–2282, 1999  相似文献   

7.
运用二次通用旋转回归设计的方法,建立了共混合金组成与缺口冲击强度之间相互关联的数学模型,研究了共混体系缺口冲击强度的影响因素及其交互作用。结果表明,对共混体系缺口冲击强度影响较大的为体系中PC的含量。  相似文献   

8.
The aim of this work is to evaluate routes to upgrade recycled engineering plastics, especially mixed plastics with acrylonitrile–butadiene–styrene copolymers (ABS) as the major component. A core‐shell impact modifier was successfully used to improve the impact strength of blends of ABS and ABS/polycarbonate (PC) blends recycled from the automotive industry. However, the presence of other immiscible components like polyamide (PA), even in small amounts, can lead to a deterioration in the overall properties of the blends. A styrene–maleic anhydride (SMA) copolymer and other commercial polymer blends were used to promote the compatibilization of ABS and PA. The core‐shell impact modifier was again found to be an efficient additive with regard to the impact strength of the compatibilized ABS/PA blends. The results obtained with fresh material blends were quite promising. However, in blends of recycled ABS and glass‐fiber‐reinforced PA, the impact strength did not exhibit the desired behavior. The presence of poorly bonded glass fibers in the blend matrix was the probable reason for the poor impact strength compared with that of a blend of recycled ABS and mineral‐filled PA. Although functionalized triblock rubbers (SEBS–MA) can substantially enhance the impact strength of PA, they did not improve the impact strength of ABS/PA blends because the miscibility with ABS is poor. The possibilities of using commercial polymer blends to compatibilize otherwise incompatible polymer mixtures were also explored giving promising results. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2535–2543, 2002  相似文献   

9.
Tensile, flexural and impact properties were measured of a heterogeneous polymer blend system, consisting of nylon 6 and a chemically modified ABS (MABS). It was found from the tensile tests that nylon-richer blends show yielding behaviour and nylon-leaner blends show necking behaviour. The addition of MABS increases the modulus, whereas the tensile strength and percentage elongation at break decrease and go through a minimum. The impact strength is increased to a maximum of approximately three times when 20 wt% of MABS is added to nylon 6. In order to interpolate the mechanical properties observed, empirical equations are given which are found to describe the experimental data rather well. Photomicrographs were taken of the tensile fractured surfaces using a scanning electron microscope.  相似文献   

10.
PC/RPET共混合金的研究   总被引:1,自引:0,他引:1  
采用回收聚对苯二甲酸乙二酯增粘以及加入增韧剂的方法,通过一步法熔融共混挤出得到了具有良好力学性能的聚碳酸酯/回收PET(PC/RPET)合金。通过适当地增粘RPET以及合适地选择增韧剂,只需加入2.5%的增韧剂 以得到力学性能与纯PC工程塑料相当的PC/RPET共混合金。同时成本比纯PC大幅度下降。  相似文献   

11.
Impact behaviours, tensile properties and fracture performance of polycarbonate (PC)/styrene ethylene-butylene-styrene-grafted-maleic anhydride (SEBS-g-MA) copolymer blends at SEBS-g-MA volume fraction Φd = 0–0.39 are evaluated. In presence of rubber a significant augmentation in notched Izod impact strength was observed while tensile modulus and strength decreased. Morphological studies reveal good interaction between the PC and the rubber particles showing homogeneous dispersion of SEBS-g-MA in the polycarbonate matrix. Interparticle distance of the dispersed phase evaluated from the morphology studies by scanning electron microscopy (SEM) and the impact strength dependence on the concentration of the blending rubber were analysed. The essential work of fracture approach is applied to study fracture properties of the blends. With increasing SEBS-g-MA concentration nonessential or plastic work increased which explained the enhancement of impact strength of blends.  相似文献   

12.
研究了不同螺杆组合及加料方式对聚碳酸酯(PC)/丙烯腈-丁二烯-苯乙烯三元共聚物(ABS)合金挤出工艺和材料力学性能的影响,并设计了一种适合于PC/ABS合金加工的螺杆组合方式.结果表明:适当的螺杆组合和加料方式可改善PC/ABS的挤出工艺,提高材料的力学性能;PC/ABS合金的拉伸强度和弯曲强度分别由原来的56.43...  相似文献   

13.
A series of acrylonitrile–butadiene–styrene (ABS) with different rubber content were prepared by diluting ABS grafting copolymer containing 60% rubber with a styrene–acrylonitrile copolymer. ABS prepared were blended with bisphenol‐A‐polycarbonate (PC) at the ratio of 70/30, 50/50, and 30/70 to prepare PC/ABS blends. Influence of rubber content in ABS on the properties of ABS and PC/ABS blends were investigated. PC/ABS blends with different compositions got good toughness when the rubber in ABS increased to the level that ABS itself got good toughness. The tensile properties and processability of PC/ABS blends decreased with the increase of the total rubber content introduced into the blends. ABS with the rubber content of 30 wt% is most suitable to be used to prepare PC/ABS blends. The rubber content in ABS affected the viscosity of ABS, and subsequently the viscosity ratio of PC to ABS. As a result, the morphology of PC/ABS blends varied. The increase of rubber content in ABS results in finer structure of PC/ABS blends. POLYM. ENG. SCI. 46:1476–1484, 2006. © 2006 Society of Plastics Engineers.  相似文献   

14.
In this study the PPS/ABS blend system was investigated in order to collectively identify the relationship among blend morphology, chemical compatibilization, and thermal property. The ABS resin was chemically modified by the incorporation of maleic anhydride through reactive extrusion for enhanced compatibilization, and ABS/PPS and the modified ABS/PPS blends were prepared by a twin‐screw extruder. The effect of chemical modification of ABS on the morphological, mechanical, and thermal properties of the resulting blend was examined. A strong chemical interaction between PPS and MABS was observed by optical microscopy, scanning electron microscopy, and FTIR. The PPS/MABS blend showed a single glass‐transition temperature in dynamic mechanical analysis, demonstrating pseudo‐homogeneous phase morphology induced by chemical compatibilization. The PPS/MABS blend also exhibited an enhanced thermal stability and heat distortion temperature compared with the PPS/ABS blend. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 661–665, 2003  相似文献   

15.
Blends of recycled polycarbonate (PC) and acrylonitrile–butadiene–styrene (ABS) were prepared and some mechanical and morphological properties were investigated. To compatibilize these blends, ABS‐g‐(maleic anhydride) (ABS‐g‐MA) and (ethylene–vinyl acetate)‐g‐(maleic anhydride) (EVA‐g‐MA) with similar degree of grafting of 1.5% were used. To compare the effect of the type of compatibilizer on mechanical properties, blends were prepared using 3, 5 and 10 phr of each compatibilizer. A co‐rotating twin‐screw extruder was used for blending. The results showed that ABS‐g‐MA had no significant effect on the tensile strength of the blends while EVA‐g‐MA decreased the tensile strength, the maximum decrease being about 9.6% when using 10 phr of this compatibilizer. The results of notched Charpy impact strength tests showed that EVA‐g‐MA increased the impact strength of blends more than ABS‐g‐MA. The maximum value of this increase occurred when using 5 phr of each compatibilizer, it being about 54% for ABS‐g‐MA and 165% for EVA‐g‐MA. Scanning electron microscopy micrographs showed that the particle size of the dispersed phase was decreased in the continuous phase of PC by using the compatibilizers. Moreover, a blend without compatibilizer showed brittle behaviour while the blends containing compatibilizer showed ductile behaviour in fracture. © 2013 Society of Chemical Industry  相似文献   

16.
研究了磷酸三苯酯(TPP)、间苯二酚双(二苯基磷酸酯)(RDP)、缩聚型固体磷酸酯(PX)和增容增韧剂对聚碳酸酯(PC)/丙烯腈-丁二烯-苯乙烯共聚物(ABS)合金阻燃性能的影响。结果表明,TPP、RDP、PX均可显著提高PC/ABS合金的阻燃性能,增容增韧剂可以改善体系的力学性能;当PC/ABS为7/3时,分别加入11 %、14 %和12 %(质量分数,下同)的3种阻燃剂,并配以适量的增容增韧剂和其他助剂,可以制得等级为UL94 V-0级的PC/ABS合金。  相似文献   

17.
抗静电PC/ABS合金材料的研究   总被引:4,自引:1,他引:3  
研究了聚碳酸酯(PC)与ABS共混体系的抗静电性能及其影响因素。结果表明:二价的烷基苯磺酰盐是PC/ABS合金材料较好的抗静电剂,可降低材料的表面电阻率和体积电阻率;在一定范围内,抗静电剂用量越多,抗静电效果越好;用马来酸酐接枝聚乙烯作增容剂能提高PC/ABS合金的抗静电性能;学能改善共混物的相容性,从而提高合金材料的冲击强度。  相似文献   

18.
以聚碳酸酯(PC)、丙烯腈–丁二烯–苯乙烯塑料(ABS)为基体树脂,加入聚烯烃弹性体(POE)、抗氧剂及其它助剂共混挤出造粒,制成低挥发性有机化合物(VOC)的环保PC/ABS合金材料。在用增韧剂POE及抗氧剂对PC/ABS体系进行改性的同时,探讨PC/ABS基料、增韧剂、抗氧剂对PC/ABS合金的力学性能、VOC及气味等级的影响,从而得到具有高性能、低VOC、低气味的环保PC/ABS合金材料,以期在汽车内饰件等方面得到应用。  相似文献   

19.
研究了甲基丙烯酸甲酯/丁二烯/苯乙烯共聚物(MBS)作为相容剂对聚碳酸酯(PC)/丙烯腈-丁二烯-苯乙烯共聚物(ABS)共混体系相容性、力学性能、形态结构以及动态力学性能的影响.结果表明,随着MBS添加量的增加,PC/ABS的缺口冲击强度和断裂伸长率呈先增大再减小的趋势,拉伸强度和弯曲强度都呈下降趋势;加入MBS后,PC/ABS的分散相粒径明显减小,PC与ABS两相的玻璃化转变温度相互靠拢,因而PC/ABS的相容性得到显著改善.  相似文献   

20.
以双酚A环氧树脂和己二酸合成了聚己二酸环氧酯,将环氧酯作为相容剂加入到PC/ABS中通过双螺杆挤出机并注射成型制备了合金,与马来酸酐接枝聚苯乙烯(SMA)相容剂增容的合金的力学性能及分散形态进行了对比。结果表明,聚环氧酯对PC相具有良好的相容性,而SMA对ABS相的相容性较好,二者复合使用可以显著改善合金的相容性;聚环氧酯能明显提高PC/ABS合金的拉伸强度和缺口冲击强度,但过量加入会降低合金的冲击强度;SEM结果表明少量的聚环氧酯即可以使ABS分散相分布均匀,与SMA并用可以使分散相尺寸减小,提高相容性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号