首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A system is described for the selection of DNA sequences showing promoter activity in the yeast Saccharomyces cerevisiae using a heterologous reporter enzyme which is efficiently secreted by the yeast host. A multicopy shuttle plasmid of the YEp-type was constructed so as to carry multiple unique cloning sites at the 5′ end of the Aspergillus awamori glucoamylase cDNA. Glucoamylase can only be expressed upon insertion at one of these unique cloning sites of a DNA fragment from any source, provided it is endowed with promoter function in S. cerevisiae. As the glucoamylase signal-peptide is functional in S. cerevisiae, the enzyme is efficiently secreted by the yeast transformants. This phenotype can be very easily detected on plate assays and accurately quantified by spectrophotometric analysis of the culture supernatant. Since S. cerevisiae naturally lacks amylolytic activity, any wild-type strain can be used as a host in this system. To evaluate the system, a DNA pool of random fusions was created by ligating sau 3A digested S. cerevisiae genomic DNA to the BglII-linearized vector. The resulting hybrid plasmids were transformed into S. cerevisiae and several transformants secreting glucoamylase to varying degrees were obtained.  相似文献   

4.
We have developed a set of cloning vectors possessing a modified Tn903 kanamycin resistance gene that enables the selection of both kanamycin‐resistant transformants in Escherichia coli and G418‐resistant transformants in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha and Pichia pastoris. Expression of this gene in yeast is controlled by the H. polymorpha glyceraldehyde‐3‐phosphate dehydrogenase promoter, while expression in E. coli is governed by an upstream E. coli lacZ promoter. Applicability of the vectors for gene disruption in H. polymorpha and S. cerevisiae was demonstrated by inactivation of the HpMAL1 and URA3 genes, respectively. One of the vectors possesses a H. polymorpha ARS allowing plasmid maintenance in an episomal state. The small size of the vectors (2–2.5 kb) makes them convenient for routine DNA cloning. In addition, we report a novel approach for construction of gene disruption cassettes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A promoter library was generated to facilitate identification of differentially regulated promoters in Saccharomyces cerevisiae. The library was constructed in a vector containing two reporter genes (EGFP and lacZ) divergently arranged about a unique cloning site. Approximately 2x10(5) clones were obtained and a flow cytometer was used to screen the library for copper-induced EGFP expression. A DNA fragment conferring copper-inducible expression of EGFP was rapidly identified. This DNA fragment, which contained several motifs associated with copper and oxidative stress homeostasis, lies upstream of two 'orphan' genes of unknown function. Further studies comparing expression from episomal vs. integrative vectors showed that construction of a similar library using an integrative vector would further enhance rapid identification of genes that are differentially regulated in S. cerevisiae. The ability to identify regulated promoters rapidly should facilitate the functional analysis of the yeast genome by identifying genes induced by specific physiological conditions.  相似文献   

6.
7.
8.
We have constructed new yeast vectors for targeted integration and conditional expression of any sequence at the Saccharomyces cerevisiae TYR1 locus which becomes disrupted. We show that vector integration is not neutral, causing prototrophy for tyrosine and auxotrophy for the vector's selectable marker (uracil or leucine, depending on the vector used). This feature allows a double screening of transformed yeast cells, improving the identification of colonies with the desired chromosomal structure. The GAL10 gene promoter has been added to drive conditional expression of cloned sequences. Using these vectors, chromosomal structure verification of recombinant clones is no longer necessary, since the noise of non-homologous recombination, as well as spontaneous reversion of the selected phenotype, can easily be identified. The ability of the vector to conditionally control gene expression has been confirmed using the gene for the green fluorescent protein (GFP) as a reporter.  相似文献   

9.
10.
11.
Formaldehyde (FA), a chemical with low toxic potential, is used as sole selective agent for transformation in the yeast Saccharomyces cerevisiae. Neither stable auxotrophic markers in recipient cells nor defined synthetic media are needed when multicopy vector YFRp1, containing the yeast SFA gene, is employed for yeast transformation. The SFA gene gives stability to the vector and its yeast (and other) passenger genes when transformants are propagated in complex media supplemented with 3–5 mM-FA. Use of inexpensive FA and non-synthetic, undefined media will lower the cost of yeast transformant propagation considerably and thus make feasible large-volume industrial application of transformants containing YFRp1 derivatives.  相似文献   

12.
We have isolated a pyruvate decarboxylase (PDC) gene from the yeast Hanseniaspora uvarum using the Saccharomyces cerevisiae PDC1 gene as a probe. The nucleotide sequence of this gene was determined and compared to PDC genes from yeast and other organisms. The H. uvarum PDC gene is more than 70% identical to the S. cerevisiae PDC isozymes and possesses a putative thiamine diphosphate binding site. The PDC enzyme was purified and partially characterized. The H. uvarum PDC was very similar to other known PDCs; the Km for pyruvate was 0·75 mM, and the enzyme is a homotetramer with subunits of Mr = 57 000. The sequence has been submitted to GenBank under Accession No. U13635.  相似文献   

13.
14.
The GAL1 and GAL10 gene cluster encoding the enzymes of galactose utilization was isolated from an asporogenic yeast, Candida maltosa. The structure of the gene cluster in which both genes were divergently transcribed from the central promoter region resembled those of some other yeasts. The expression of both genes was strongly induced by galactose and repressed by glucose in the medium. Galactose-inducible expression vectors in C. maltosa were constructed on low- and high-copy number plasmids using the promoter regions of both genes. With these vectors and the β-galactosidase gene from Kluyveromyces lactis as a reporter, galactose-inducible expression was confirmed. Homologous overexpression of members of the cytochrome P-450 gene family in C. maltosa was also successful by using a high-copy-number vector under the control of these promoters. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
The vicinal diketones (VDK), such as diacetyl and 2,3‐pentandione, impart an unpleasant butter‐like flavour to beer. Typically, these are required to be reduced below the flavour thresholds during the maturation (lagering) stages of the brewing process. To shorten beer maturation time, we constructed a self‐cloning, bottom‐fermenting yeast with low VDK production by integrating ILV5, a gene encoding a protein that metabolizes α‐acetolactate and α‐aceto‐α‐hydroxybutyrate (precursors of VDK). A DNA fragment containing Saccharomyces cerevisiae‐type ILV5 was inserted upstream of S. cerevisiae‐type ILV2 in bottom‐fermenting yeast to construct self‐cloning strains with an increased copy number of ILV5. Via transformation, ILV2 was replaced with the sulfometuron methyl (SM) resistance gene SMR1B, which differs by a single nucleotide, to create SM‐resistant transformants. The wort fermentation test, using the SC‐ILV5‐homo inserted transformant, confirmed a consecutive reduction in VDK and a shortening period during which VDK was reduced to within the threshold. The concentrations of ethyl acetate, isoamyl acetate, isoamyl alcohol, 1‐propanol, isobutyl alcohol and active isoamyl alcohol (flavour components) were not changed when compared with the parent strain. We successfully constructed self‐cloning brewer's yeast in which SC‐ILV5 was homo‐inserted. Using the transformed yeast, the concentration of VDK in fermenting wort was reduced, whereas the concentrations of flavour components were not affected. This genetically stable, low VDK‐producing, self‐cloning bottom‐fermenting yeast would contribute to the shortening of beer maturation time without affecting important flavour components produced by brewer's yeast. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Measuring relative genetic distances is one of the best ways to locate genetic loci. Here we report the construction of a strains set for genetic mapping in Schizosaccharomyces japonicus, which belongs to the genus Schizosaccharomyces together with the well‐studied fission yeast Sz. pombe. We constructed 29 strains that bear a positive‐negative selection marker at different loci. The marker was inserted every 500 kb in the genome of Sz. japonicus. Each marker thus becomes a ‘scale mark’ of a chromosome that behaves like a yardstick. By determining the genetic distances from the inserted markers, the relative location of a genomic mutation can be determined. We also constructed a fosmid library that covers an entire genome of Sz. japonicus. These tools together would facilitate identification and cloning of the gene. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Under high boron (B) conditions, nodulin 26-like intrinsic protein 5;1 (NIP5;1) mRNA, a boric acid channel, is destabilized to avoid excess B entry into roots of Arabidopsis thaliana. In this regulation, the minimum upstream open reading frame (uORF), AUGUAA, in its 5′-untranslated region (5′-UTR) is essential, and high B enhances ribosome stalling at AUGUAA and leads to suppression of translation and mRNA degradation. This B-dependent AUGUAA-mediated regulation occurs also in animal transient expression and reticulocyte lysate translation systems. Thus, uncovering the ubiquitousness of B-dependent unique regulation is important to reveal the evolution of translational regulation. In the present study, we examined the regulation in Saccharomyces cerevisiae. Reporter assay showed that in yeast, carrying ATGTAA in 5′-UTR of NIP5;1 upstream of the reporter gene, the relative reporter activities were reduced significantly under high B conditions compared with control, whereas deletion of ATGTAA abolished such responses. This suggests that AUGUAA mediates B-dependent regulation of translation in Saccharomyces cerevisiae. Moreover, the deletion of ATGTAA resulted in up to 10-fold increase in general reporter activities indicating the suppression effect of AUGUAA on translation of the main ORF. Interestingly, mRNA level of the reporter gene was not affected by B in both yeast cells with and without AUGUAA. This finding reveals that in yeast, unlike the case in plants, mRNA degradation is not associated with AUGUAA regulation. Together, results suggest that B-dependent AUGUAA-mediated translational regulation is common among eukaryotes.  相似文献   

18.
19.
Pichia pastoris is a popular host organism for expressing heterologous proteins, and various expression vectors for this yeast are currently available. Recently, vectors containing novel dominant antibiotic resistance markers have become a strong and developing field of research for this methylotropic yeast strain. We have developed new P. pastoris expression vectors, the pPICKanMX6 and pPICKanMX6α series. These vectors were constructed by replacing the zeocin resistance gene of the pPICZA, B, C and pPICZαA, B and C vectors with the Tn903 kanR marker from pFA6a KanMX6, which confers G‐418 sulphate resistance in P. pastoris. The limits of antibiotic resistance in two transformant yeast strains were investigated, and the selection marker was shown to be stably retained. To demonstrate their usefulness, a gene encoding hexa‐histidine‐tagged green fluorescent protein (GFPH6) was cloned into one of the new vectors and GFP expression examined in P. pastoris cells. The protein expression levels using the pPICKanMX6B vector were comparable with that using the original plasmid, based on zeocin resistance as seen by yeast cell fluorescence. Moreover, GFPH6 was able to be isolated by immobilized metal ion affinity chromatography (IMAC) from lysates of both yeast strains. A model reporter construct has been used to demonstrate successful recombinant protein expression and its subsequent purification using these new vectors. Corresponding vectors can now also be engineered with foreign gene expression under the control of various different promoters, to increase the flexibility of P. pastoris as a cellular factory for heterologous protein production. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号