首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel approach to the development of infinite element formulations for exterior problems of time-harmonic acoustics is presented. This approach is based on a functional which provides a general framework for domain-based computation of exterior problems. Special cases include non-reflecting boundary conditions (such as the DtN method). A prominent feature of this formulation is the lack of integration over the unbounded domain, simplifying the task of discretization. The original formulation is generalized to account for derivative discontinuities across infinite element boundaries, typical of standard infinite element approximations. Continuity between finite elements and infinite elements is enforced weakly, precluding compatibility requirements. Various infinite element approximations for two-dimensional configurations with circular interfaces are presented. Implementation requirements are relatively simple. Numerical results demonstrate the good performance of this scheme. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
The theory for integrating the element matrices for rectangular, triangular and quadrilateral finite elements for the solution of the Helmholtz equation for very short waves is presented. A numerical integration scheme is developed. Samples of Maple and Fortran code for the evaluation of integration abscissæ and weights are made available. The results are compared with those obtained using large numbers of Gauss–Legendre integration points for a range of testing wave problems. The results demonstrate that the method gives correct results, which gives confidence in the procedures, and show that large savings in computation time can be achieved. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
A comparison of two bubble‐enriched methods, derived by different considerations, indicates that the methods are identical in some cases. Thus, series representations of auxiliary functions, derived independently for the two methods, turn out to be equivalent prior to truncation. Three such series for time‐harmonic acoustics are considered. Dispersion analysis points to the more efficient series representation and provides guidelines for the number of terms to be retained. Numerical tests confirm the validity of these practical guidelines. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
We present the development of a two‐dimensional Mixed‐Hybrid Finite Element (MHFE) model for the solution of the non‐linear equation of variably saturated flow in groundwater on unstructured triangular meshes. By this approach the Darcy velocity is approximated using lowest‐order Raviart–Thomas (RT0) elements and is ‘exactly’ mass conserving. Hybridization is used to overcome the ill‐conditioning of the mixed system. The scheme is globally first‐order in space. Nevertheless, numerical results employing non‐uniform meshes show second‐order accuracy of the pressure head and normal fluxes on specific grid points. The non‐linear systems of algebraic equations resulting from the MHFE discretization are solved using Picard or Newton iterations. Realistic sample tests show that the MHFE‐Newton approach achieves fast convergence in many situations, in particular, when a good initial guess is provided by either the Picard scheme or relaxation techniques. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Trefftz methods for the numerical solution of partial differential equations (PDEs) on a given domain involve trial functions which are defined in subdomains, are generally discontinuous, and are solutions of the governing PDE (or its adjoint) within each subdomain. The boundary conditions and matching conditions between subdomains must be enforced separately. An interesting novel result presented in this paper is that the least-squares method (LSM) and the ultraweak variational formulation, two methods already established for solving the Helmholtz equation, can be derived in the framework of the Trefftz-type methods. In the first case, the boundary conditions and interelement continuity are enforced by means of a least-squares procedure. In the second, a Galerkin-type weighted residual method is used. Another goal of the work is to assess the relative efficiency of each method for solving shortwave problems in acoustics and to study the stability of each method. The numerical performance of each scheme is assessed with reference to two 2-D test problems; acoustic propagation in an uniform soft-walled duct, and propagation in an L-shaped domain, the latter involving singular behaviour at a sharp corner. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents an FMM (fast multipole method) for periodic boundary value problems for Helmholtz' equation in 2D. The periodic Green function is an important ingredient in our formulation, which is computed efficiently with the help of the Fourier analysis. We validate the proposed method by comparing the obtained numerical results with those computed with the conventional approach. We then apply the proposed method to the analysis of scattering problems for periodic array of cracks and plot the energy transmittance vs wave numbers. The stopband and related phenomena are observed clearly. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper a stabilized finite element scheme for the poroelasticity equations is proposed. This method, based on the perturbation of the flow equation, allows us to use continuous piecewise linear approximation spaces for both displacements and pressure, obtaining solutions without oscillations independently of the chosen discretization parameters. The perturbation term depends on a parameter which is established in terms of the mesh size and the properties of the material. In the one‐dimensional case, this parameter is shown to be optimal. Some numerical experiments are presented indicating the efficiency of the proposed stabilization technique. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The Galerkin method enriched with residual-free bubbles is considered for approximating the solution of the Helmholtz equation. Two-dimensional tests demonstrate the improvement over the standard Galerkin method and the Galerkin-least-squares method using piecewise bilinear interpolations. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
It is shown that the Helmholtz equation in three dimension leads to finite element approximations on tetrahedral elements that closely resemble the corresponding two-dimensional treatment on triangle. For each polynomial order, there exist two numeric universal matrices independent to tetrahedron size and shape; the element matrices are always given as linear combinations of row and column permutations of these. Numeric matrices are given up to third-order, and the permutation schemes are shown in detail. Experimental computer programs using these elements have shown fast matrix assembly times; convergence rates are essentially similar to those obtained with the corresponding triangular elements.  相似文献   

10.
When applying numerical methods for the computation of stationary waves from the Helmholtz equation, one obtains ‘numerical waves’ that are dispersive also in non-dispersive media. The numerical wave displays a phase velocity that depends on the parameter k of the Helmholtz equation. In dispersion analysis, the phase difference between the exact and the numerical solutions is investigated. In this paper, the authors' recent result on the phase difference for one-dimensional problems is numerically evaluated and discussed in the context of other work directed to this topic. It is then shown that previous error estimates in H1-norm are of nondispersive character but hold for medium or high wavenumber on extremely refined mesh only. On the other hand, recently proven error estimates for constant resolution contain a pollution term. With certain assumptions on the exact solution, this term is of the order of the phase difference. Thus a link is established between the results of dispersion analysis and the results of numerical analysis. Throughout the paper, the presentation and discussion of theoretical results is accompanied by numerical evaluation of several model problems. Special attention is given to the performance of the Galerkin method with a higher order of polynomial approximation p(h-p-version).  相似文献   

11.
The higher-order finite-element scheme with mass lumping for triangles and tetrahedra is an efficient method for solving the wave equation. A number of lower-order elements have already been found. Here the search for elements of higher order is continued. Elements are constructed in a systematic manner. The nodes are chosen in a symmetric way. Integration rules must be exact up to a certain degree to maintain an overall accuracy that is the same as without mass lumping. First, for given integration degrees, consistent rule structures are derived for which integration formulas are likely to exist. Then, as each rule structure corresponds to a potential element of certain order, the position of element nodes and the integration weights can be found by solving the related system of nonlinear equations. With this systematic approach, a number of new sixth-order triangular elements and a new fourth-order tetrahedral element have been found.  相似文献   

12.
In this paper, we apply the variational multiscale method with subgrid scales on the element boundaries to the problem of solving the Helmholtz equation with low‐order finite elements. The expression for the subscales is obtained by imposing the continuity of fluxes across the interelement boundaries. The stabilization parameter is determined by performing a dispersion analysis, yielding the optimal values for the different discretizations and finite element mesh configurations. The performance of the method is compared with that of the standard Galerkin method and the classical Galerkin least‐squares method with very satisfactory results. Some numerical examples illustrate the behavior of the method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper a new numerical method for the multifrequency analysis of the three-dimensional Helmholtz equation is introduced. The collocation boundary element method (BEM) is used for the discretisation of the problem. The identity of the Fourier transform with respect to the wave number is applied to the matrix of the resulting linear system. The analytical form and some important properties are derived. Some numerical examples for the solution are presented.  相似文献   

14.
Preconditioning techniques based on incomplete factorization of matrices are investigated, to solve highly indefinite complex‐symmetric linear systems. A novel preconditioning is introduced. The real part of the matrix is made positive definite, or less indefinite, by adding properly defined perturbations to the diagonal entries, while the imaginary part is unaltered. The resulting preconditioning matrix, which is obtained by applying standard methods to the perturbed complex matrix, turns out to perform significantly better than classical incomplete factorization schemes. For realistic values of the GMRES restart parameter, spectacular reduction of iteration counts is observed. A theoretical spectral analysis is provided, in which the spectrum of the preconditioner applied to indefinite matrix is related to the spectrum of the same preconditioner applied to a Stieltjes matrix extracted from the indefinite matrix. Results of numerical experiments are reported, which display the efficiency of the new preconditioning. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
A two-level finite element method is introduced and its application to the Helmholtz equation is considered. The method retains the desirable features of the Galerkin method enriched with residual-free bubbles, while it is not limited to discretizations using elements with simple geometry. The method can be applied to other equations and to irregular-shaped domains. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, the boundary integral equations (BIEs) for the tangential derivative of flux in Laplace and Helmholtz equations are presented. These integral representations can be used in order to solve several problems in the boundary element method (BEM): cubic solutions including degrees of freedom in flux's tangential derivative value (Hermitian interpolation), nodal sensitivity, analytic gradients in optimization problems, or tangential derivative evaluation in problems that require the computation of such variable (elasticity problems in BEM). The analysis has been developed for 2D formulation. Kernels for tangential derivative of flux lead to high‐order singularities (O(1/r3)). The limit to the boundary analysis has been carried out. Based on this analysis, regularization formulae have been obtained in order to use such BIE in numerical codes. A set of numerical benchmarks have been carried out in order to validate theoretical and practical aspects, by considering known analytic solutions for the test problems. The results show that the tangential BIEs have been properly developed and implemented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
In goal‐oriented adaptivity, the error in the quantity of interest is represented using the error functions of the direct and adjoint problems. This error representation is subsequently bounded above by element‐wise error indicators that are used to drive optimal refinements. In this work, we propose to replace, in the error representation, the adjoint problem by an alternative operator. The main advantage of the proposed approach is that, when judiciously selecting such alternative operator, the corresponding upper bound of the error representation becomes sharper, leading to a more efficient goal‐oriented adaptivity. While the method can be applied to a variety of problems, we focus here on two‐ and three‐dimensional (2‐D and 3‐D) Helmholtz problems. We show via extensive numerical experimentation that the upper bounds provided by the alternative error representations are sharper than the classical ones and lead to a more robust p‐adaptive process. We also provide guidelines for finding operators delivering sharp error representation upper bounds. We further extend the results to a convection‐dominated diffusion problem as well as to problems with discontinuous material coefficients. Finally, we consider a sonic logging‐while‐drilling problem to illustrate the applicability of the proposed method.  相似文献   

18.
A meshless method for the solution of Helmholtz equation has been developed by using the radial basis integral equation method (RBIEM). The derivation of the integral equation used in the RBIEM is based on the fundamental solution of the Helmholtz equation, therefore domain integrals are not encountered in the method. The method exploits the advantage of placing the source points always in the centre of circular sub-domains in order to avoid singular or near-singular integrals. Three equations for two-dimensional (2D) or four for three-dimensional (3D) potential problems are required at each node. The first equation is the integral equation arising from the application of the Green’s identities and the remaining equations are the derivatives of the first equation with respect to space coordinates. Radial basis function (RBF) interpolation is applied in order to obtain the values of the field variable and partial derivatives at the boundary of the circular sub-domains, providing this way the boundary conditions for solution of the integral equations at the nodes (centres of circles). The accuracy and robustness of the method has been tested on some analytical solutions of the problem. Two different RBFs have been used, namely augmented thin plate spline (ATPS) in 2D and f(R)=4Rln(R) augmented by a second order polynomial. The latter has been found to produce more accurate results.  相似文献   

19.
Based on properties of the Helmholtz equation, we derive a new equation for an auxiliary variable. This reduces much of the oscillations of the solution leading to more accurate numerical approximations to the original unknown. Computations confirm the improved accuracy of the new models in both two and three dimensions. This also improves the accuracy when one wants the solution at neighbouring wavenumbers by using an expansion in k. We examine the accuracy for both waveguide and scattering problems as a function of k, h and the forcing mode l. The use of local absorbing boundary conditions is also examined as well as the location of the outer surface as functions of k. Connections with parabolic approximations are analysed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The classical Trefftz-method can be generalized such that different types of finite elements and boundary elements are obtained. In a Trefftz-type approach we utilize functions which a priori satisfy the governing differential equations. In this paper the systematic construction of singular Trefftz-trial functions for elasticity problems is discussed. For convenience a list of solution representations and particular solutions is given which did not appear together elsewhere. The Trefftz-trial functions with singular expressions on the boundary are constructed such that the physical components (stresses, strains, displacements) remain finite in the solution domain and on the boundary. The unknown coefficients of the linearly independent Trefftz-trial functions for the physical components can be obtained by using a variational formulation. The symmetric coefficient matrix in the discussed procedure can be obtained from the evaluation of boundary integrals. As an application of the proposed boundary element algorithm, the symmetric stiffness matrices of subdomains (finite element domains) are calculated. For the numerical example the solution domain is decomposed into triangular subdomains so that a standard finite element program could be used to assemble the system of equations. The chosen example is meant as a simple test for the proposed algorithm and should not be understood as a proposal for a new triangular finite element. Using the proposed boundary element techniques, symmetric stiffness matrices for irregular shaped subdomains (finite elements) can be derived. However, in order to use the method in a finite element package for the coupling of irregular shaped subdomains some program modifications will be necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号