首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Block copolymers of polycarbonate‐b‐poly(methyl methacrylate) (PC‐b‐PMMA) and tetramethyl poly(carbonate)‐b‐poly(methyl methacrylate) (TMPC‐b‐PMMA) were examined as compatibilizers for blends of polycarbonate (PC) with styrene‐co‐acrylonitrile (SAN) copolymer. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fiber retraction (IFR) technique and an asymmetric double cantilever beam fracture test. The average diameter of dispersed particles and interfacial tension of the PC/SAN blends were reduced by adding compatibilizer to the PC/SAN blends. Fracture toughness of the blends was also improved by enhancing interfacial adhesion with compatibilizer. TMPC‐b‐PMMA copolymer was more effective than PC‐b‐PMMA copolymer as a compatibilizer for the PC/SAN blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2649–2656, 2003  相似文献   

2.
The mechanical, thermal, rheological, and morphological properties of polypropylene (PP)/polystyrene (PS) blends compatibilized with styrene–isoprene–styrene (SIS), styrene–butadiene–styrene (SBS), and styrene–butadiene–rubber (SBR) were studied. The incompatible PP and PS phases were effectively dispersed by the addition of SIS, SBS, and SBR as compatibilizers. The PP/PS blends were mechanically evaluated in terms of the impact strength, ductility, and tensile yield stress to determine the influence of the compatibilizers on the performance properties of these materials. SIS‐ and SBS‐compatibilized blends showed significantly improved impact strength and ductility in comparison with SBR‐compatibilized blends over the entire range of compatibilizer concentrations. Differential scanning calorimetry indicated compatibility between the components upon the addition of SIS, SBS, and SBR by the appearance of shifts in the melt peak of PP toward the melting range of PS. The melt viscosity and storage modulus of the blends depended on the composition, type, and amount of compatibilizer. Scanning electron microscopy images confirmed the compatibility between the PP and PS components in the presence of SIS, SBS, and SBR by showing finer phase domains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 266–277, 2003  相似文献   

3.
The effectiveness of chlorinated polyethylene-graft-polystyrene (CPE-g-PS) as a polymeric compatibilizer for immiscible poly(vinyl chloride)/polystyrene (PVC/PS) blends was investigated. The miscibility, phase behavior, and mechanical properties were studied using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), Izod impact tests, tensile tests, and scanning electron microscopy (SEM). DSC and DMA studies showed that PVC is immiscible with chlorinated polyethylene (CPE) in CPE-g-PS, whereas the PS homopolymer is miscible with PS in CPE-g-PS. The PVC/PS/CPE-g-PS ternary blends exhibit a three-phase structure: PVC phase, CPE phase, and PS phase that consisted of a PS homopolymer and PS in CPE-g-PS. The mechanical properties showed that CPE-g-PS interacts well with both PVC and PS and can be used as a polymeric compatibilizer for PVC/PS blends. CPE-g-PS can also be used as an impact modifier for both PVC and PS. SEM observations confirmed, after the addition of CPE-g-PS, improvement of the interfacial adhesion between the phases of the PVC/PS blends. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 995–1003, 1998  相似文献   

4.
利用熔融接枝法制备了双峰聚乙烯接枝马来酸酐(bPE-g-MAH),将其用作聚碳酸酯/双峰聚乙烯(PC/bPE)共混物的增容剂。通过力学性能测试和扫描电镜分析,研究了bPE-g-MAH对共混物相容性和力学性能的影响。结果表明:bPE-g-MAH的加入使得PC和bPE两相的界面黏合作用增强,使PC/bPE共混物的冲击强度显著提高。  相似文献   

5.
Blends of polycarbonate (PC) and acrylonitrile ‐ ethylene‐propylene‐diene‐styrene (AES) were reactive compatibilized by styrene‐maleic anhydride copolymers (SMA). The changes in phase morphology and interfacial characteristics of the blends as a function of maleic anhydride content of SMA and the concentration of compatibilizer have been systematic studied. The occurrence of reaction between the terminal hydroxyl groups of PC and the maleic anhydride (MA) of compatibilizer was confirmed by fourier transform infrared (FTIR) spectroscopy. A glass transition temperature (Tg) with an intermediate value between Tg(AES) and Tg(PC) was found on differential scanning calorimeter (DSC) curves of PC/AES blends compatibilized with SMA contains high levels of MA. Furthermore, at lower compatibilizer content, increase of the compatibilizer level in blends result in decreasing gap between two Tgs corresponding to the constituent polymers. Small angle X‐ray scattering (SAXS) test results indicated that compatibilizer concentration for the minimum of blend interface layer's thickness was exactly the same as it was when compatibilized PC/AES blend exhibited optimal compatibility in DSC test. The observed morphological changes were consistent well with the DSC and SAXS test results. A new mechanism of interfacial structural development was proposed to explain unusual phenomena of SMA compatibilized PC/AES blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42103.  相似文献   

6.
针对聚碳酸酯(PC)/聚对苯二甲酸丁二酯(PBT)共混体系相容性差的缺点,采用(乙烯/乙酸乙烯酯)共聚物(E/VAC)作增容剂对其进行改性。研究了E/VAC对PC/PBT共混体系结晶性能和力学性能的影响,并用扫描电子显微镜观察了共混体系的形态结构。结果表明,E/VAC可以提高PC/PBT共混体系的相容性,当E/VAC含量为2%时共混体系的综合性能较好。试验还发现加入E/VAC后PC/PBT共混体系有良好的成型加工性能。  相似文献   

7.
Nanofillers have revolutionized the field of polymer modification. Modification of polymer blends with nanofillers opens up a myriad of opportunities to develop materials of choice. Polystyrene (PS) and high density polyethylene (HDPE) are two widely used standard plastics. To generate high modulus and strength a PS rich blend of PS/HDPE (80/20) was selected and the blend was modified using low cost nanokaolin clay, a 1:1 alumina silicate. The effect of maleic anhydride grafted PS/PE as compatibilizer in this system was studied. The incorporation of the compatibilizer improves the mechanical properties. This can be correlated with better interfacial adhesion as evidenced by scanning electron microscopy. The optimum in these properties was obtained at a compatibilizer concentration of 10–15%. The composites were characterized byX‐ray diffraction, differential scanning calorimetric, and dynamic mechanical analyzer techniques. This study shows that kaolin can be used as potential modifier of PS/HDPE blend. POLYM. COMPOS. 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
Waste rubber powder/polystyrene (WRP/PS) blends with different weight ratio were prepared with styrene grafted styrene butadiene rubber copolymer (PS-g-SBR) as a compatibilizer. The graft copolymer of PS-g-SBR was synthesized by emulsion polymerization method and confirmed through Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC). The copolymer at different weight ratio was subsequently added into the blends. The effects of weight ratio of WRP/PS and compatibilizer loading on mechanical properties were investigated. PS/WRP blends in a weight ratio of 80/20 showed higher impact strength. Moreover, the impact strength of the blend materials increased with the addition of SBR-g-PS, however, decreased at a high loading of the copolymer. The morphology and thermal properties of WRP/PS blends were examined by DSC, scanning electron microscopy (SEM), thermogravimetry (TG). DSC indicated that compared with PS/WRP blend, the glass transition temperature (T g) of PS matrix phase in PS/WRP/SBR-g-PS blend shifted to low temperature because of the formation of chemical crosslinks or boundary layer between PS and WRP, and the T g of WRP phase of both the PS/WRP and PS/WRP/SBR-g-PS blends did not appear. SEM results showed that interfacial adhesion in the blends with the PS-g-SBR copolymer was improved. The morphology was a typical continuous–discontinuous structure. PS and WRP presented continuous phase and discontinuous phase, respectively, indicating the moderate interface adhesion between WRP and PS matrix. TG illustrated that the onset of degradation temperature in the PS/WRP/PS-g-SBR blend decreased slightly by contrast with PS/WRP blend and the degradation of PS/WRP blends with and without SBR-g-PS was completed about at the same values.  相似文献   

9.
Phthalic anhydride terminated polystyrene (PS-An) and styrene-maleic anhydride copolymer (SMA) were compared as a compatibilizer at low loadings (<10 wt%) in 70/30 polyamide 66 (PA66)/polystyrene (PS) blends. Compatibilization efficiency was judged by morphology of the blends and the extent of interfacial coupling to copolymer. Fluorescent labels of functional PS's (anthracene and pyrene for PS-An and SMA, respectively) allowed the detection of small amounts of reactively formed block (PA66-b-PS) or graft copolymer (SMA-g-PA66) in the blends via gel permeation chromatography with a fluorescence detector. Extremely fast reactions giving >60% conversion in 0.5 min mixing were observed regardless of the molecular weight, the structure, and the amount of the functional PS's. Interfacial stability of the reactively formed copolymers was estimated by micelle formation in the bulk phases and the interfacial coverage, Σ. PS-An with higher molecular weight (37 kg/mol) was most effective as a compatibilizer at the interface, showing less tendency to form microemulsions by suppressing interfacial roughening. However, a large portion of PA66-b-PS from low molecular weight PS-An (10 kg/mol) and SMA-g-PA66 from random functional SMA (16 kg/mol) migrated to the bulk phase to form micelles even at <2 wt% loadings. Blends of PA66 with syndiotactic PS compatibilized with PS-An gave very similar morphology to the PA66/PS blends indicating that these conclusions apply also to PA66/sPS blends.  相似文献   

10.
The compatibilizing effect of the ionomer, poly(styrene‐co‐sodium acrylate) (PSSAc), on immiscible blends of polystyrene (PS)/polyamide 6 (PA6) was studied by mechanical tests and scanning electron microscopy. The PSSAc acts as an effective compatibilizer because both the deformation at break (%) obtained by tensile stress–strain tests and the impact rupture energy are larger in blends containing small amounts of PSSAc. The morphologies of the fractured surfaces produced by tensile stress–strain tests of blends with or without the ionomer confirm that PSSAc increases the interfacial adhesion between PS and PA6 phases. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2545–2551, 2004  相似文献   

11.
Polystyrene (PS) and polyethylene (PE), along with their reactive counterparts, i.e., polystyrene having oxazoline reactive groups (OPS) and polyethylene with carboxylic acid groups (CPE), were melt blended in a Rheomix mixer. These blends were prepared by mixing these polymers in various proportions under a variety of conditions. In an alternate procedure the OPS, CPE graft polymer (OPS-g-CPE) was prepared by melt blending these two polymers beforehand, and subsequently this grafted polymer was used as a compatibilizer for PS–PE blends. The effects of the addition of OPS and CPE, on the one hand, and OPS-g-CPE, on the other hand, on the compatibility of PS–PE blends were investigated. The morphology of these blends was examined with a scanning electron microscope (SEM) and related to their tensile properties. The PS–PE blends are found to have the typical coarse morphology of incompatible blends and poor tensile properties while their reactive counterparts, OPS-CPE blends, have fine grain microstructure and show improved tensile strength throughout the range and improved elongation in the PE-rich blends. Relatively low concentrations of the reactive pair, oxazoline and carboxylic acid, are shown to be necessary to produce improved compatibility. The preblended graft copolymer OPS-g-CPE imparts compatibility to PS–PE blends also but not as effectively. This suggests that the addition of OPS and CPE during melt mixing of PS and PE forms OPS-g-CPE polymer at the interface and that these ingredients act as “in situ reactive compatibilizers” which improve physical properties.  相似文献   

12.
Polymer pairs with moderate specific interactions may lead to phases with low interfacial energy, which is desirable for rubber-toughening plastics. SAN and some polyurethane elastomers (TPU) belong to this kind of system. Without adding compatibilizer, SAN/TPU blends possess excellent mechanical properties. However, SAN and EVA form mechanically incompatible blends. The properties of the SAN/EVA blends can be substantially improved by incorporating TPU. Scanning electron microscopy (SEM) observations prove that TPU acts as a compatibilizer preferentially locating at the interface.  相似文献   

13.
Compatibilizing effects of diblock copolymer polystyrene-block-poly(ethylene-co-propylene) (SEP) on the morphology and mechanical properties of immiscible blends of poly(propylene) (PP) and polystyrene (PS) were investigated. Notched impact strength, yield stress, elongation at yield and Young's modulus were determined as a function of different weight ratios of PP and PS and different amounts of added SEP as well. Scanning electron microscopy revealed a two-phase morphology of PP/PS blends, which exhibit poor mechanical properties. Even 2,5 wt.-% of SEP added to PP/PS blends can improve the notched impact strength and elongation at yield compared to non-compatibilized PP/PS blends. 10 wt.-% of SEP compatibilizer converted the brittle PP/PS blend to quite impactresistant polymeric material. Mechanical properties were improved because of the morphological changes and increased interfacial adhesion as a result of SEP localization between PP and PS phases. An analysis of yield stress data in terms of theoretical models showed that yield stress values of binary PP/PS blends can be predicted with Nielsen's model.  相似文献   

14.
The objective of this work was to study the effectiveness of low‐cost commercial compatibilizers and several processes (internal mixer, single‐ and twin‐screw extruders) for two types of plastic blends: high‐density polyethylene/polypropylene and high‐density polyethylene/polystyrene blends, to gain insight into the recycling of wastes from those frequently encountered mixed plastics. Blends going from a pure A to a pure B component, with and without a compatibilizer, were prepared using an internal mixer, a corotating twin‐screw extruder, as well as a single‐screw extruder to follow an industrial‐convenient process. In both cases, the analyses of blend morphologies highlighted the poor adherence between the two phases in the uncompatibilized blends. Compatibilized blends display better adherence between phases and the ability to process blends made from both single‐ and twin‐screw extruders. When adding a compatibilizer, the viscosity of each blend (PE/PP or PE/PS) increased due to a better adhesion of the phases. Charpy impact tests showed that the presence of the compatibilizer in PE/PS blends increased their impact properties. Indeed, the improvement of the adhesion between the two phases enabled stress transfer at the interface. A single‐screw extruder seems to be efficient as a processing method on an industrial scale when a compatibilizer is used. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2475–2484, 2003  相似文献   

15.
通过运用溶液成膜共混法制备了系列聚苯乙烯/聚人烯酸丁酯(PS/PBMA)共混物。借助差示扫描量热法(DSC)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜9SEM)研究了磺化磺苯乙烯(SPS)及其离物对共体系相容性的影响。共混物中SPS磺化度越高,PBMA相的下班伦为温度向高温方向移动越明显 。SPS镧离聚物(SPS1.8-La)为增容剂时,DCS结果显示共混物2相Tg靠扰;SEM归咎显示2相分  相似文献   

16.
Isocyanate‐ and amine‐functionalized polypropylene (PP) and polystyrene (PS) were prepared through grafting and copolymerization method. These compounds are used as precursors for PP‐graft‐PS (PP‐g‐PS) copolymers and reacted at the matrix interface of PP/PS blends. Functionalized polymer structures were characterized by 1H NMR and FTIR spectroscopy. The effects of the synthesized compatibilizer on the rheological and morphological behavior of PP/PS blends were investigated systematically. Results showed that the functional polymer was successfully synthesized, and the additional two different compatibilizer systems dramatically decreased the size of the dispersed phase domains in PP/PS blends. Compared with the uncompatibilized blends, compatibilized blends exhibited a slightly higher crystallization temperature because the melting points of the blend components were not evidently affected by the addition of compatibilizer, as revealed by differential scanning calorimetry. The compatibilizer effect on the PP/PS blends was reflected through rheological property and dynamic mechanical analysis. POLYM. ENG. SCI., 55:614–623, 2015. © 2014 Society of Plastics Engineers  相似文献   

17.
Blends of liquid crystalline poly(oxybenzoate-co-oxynaphthalate) (Vectra A950) and polycarbonate (PC) were prepared by adding a compatibilizer to the two polymers in a melt-blending process. The compatibilizer was based on controlled transesterification between synthesized poly(oxybenzoate-co-terephthalate) (40/60) and PC. The compatibilizer exhibited birefringence, and its thermal property was analyzed by differential scanning calorimetry. The maximum increase in tensile modulus and tensile strength of these compatibilized Vectra blends were 24% and 54%, respectively, as compared with those of binary Vectra blend without compatibilizer resulting from an injection-molding process. The tensile properties of the compatibilized Vectra blends decreased once the concentration of the compatibilizer exceeded 2 phr. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1527–1533, 1997  相似文献   

18.
吴挡  李玉雪  俞强 《中国塑料》2015,29(12):39-45
制备了具有不同嵌段长度的聚乳酸b聚甲基丙烯酸甲酯(PLA-b-PMMA),并将其作为大分子相容剂用于聚碳酸酯/聚乳酸(PC/PLA)共混体系,研究嵌段结构对PC/PLA共混体系形态与性能的影响。用傅里叶红外光谱仪和核磁共振氢谱表征嵌段共聚物的结构,用差示扫描量热仪、扫描电子显微镜和力学性能测试表征共混体系的结构及性能。结果表明,PLA-b-PMMA的加入改善了PC与PLA之间的相容性,其增容效果取决于PLA-b-PMMA的添加量及两嵌段的长度;当PLA-b-PMMA添加量为6 %时,PC与PLA之间的相容性较好;在PMMA嵌段长度一定时,随着PLA链段长度从3390提高到9780,共混体系中两相的相容性不断改善,共混物的力学性能增强;在PLA嵌段长度一定时,随着PMMA链段长度从20680提高到99680,增容效果逐渐下降。  相似文献   

19.
将苯乙烯(St)和甲基丙烯酸环氧丙酯(GMA)通过乳液聚合接枝到聚丁二烯(PB)上,形成核壳结构接枝共聚物PB-g-PS和官能化接枝共聚物PB-g-(St-GMA),并考察了其对聚酰胺6/聚苯乙烯(PA6/PS)共混物相容性的影响。对共混物的流变性能、动态力学性能和形态结构进行了分析,结果表明,引入1 %官能化单体GMA后,共混物的平衡扭矩增加,PA6与PS两相的玻璃化转变温度差值变小,分散相尺寸明显减小,PB-g-(St-GMA)可以改善PA6/PS共混物的相容性。继续增加PB-g-(St-GMA)中GMA含量时,共混物相容性下降。  相似文献   

20.
The compatibility and phase morphology of poly(phenylene oxide) (PPO) multicomponent blends with poly(ethylene terephthalate) (PET) and polystyrene (PS) were studied using differential-scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM) methods. The effect of glycidyl methacrylate–styrene copolymer (GMS), as a compatibilizer, on the morphology of the PPO blends has also been studied in detail. The influence of the molecular weight of PET and the synergetic effect of the compatibilizers of GMS and phenoxy (PN) on the morphology were examined. The DSC and DMA results show that two distinct glass transitions corresponding to PET and PPO existed; however, the Tg of PPO shifts toward lower temperature region due to the addition of GMS and PS. The SEM results reveal that PET component exists as dispersed phases in the PPO matrix, while PS is miscible in the PPO matrix. A significant improvement of the compatibility was achieved for the PPO multicomponent blends because of the synergetic effect of GMS and phenoxy. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号