首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified and analysed a putative response regulator two‐component gene (CaSSK1) from Candida albicans and its encoding protein (CaSsk1p). CaSSK1 has an open reading frame of 2022 bp. In the promotor region of CaSSK1 a short sequence is found that matches the consensus sequence of the stress response elements (STRE) from Saccharomyces cerevisiae. CaSSK1 is located on chromosome 1 and is expressed in either yeast or mycelial phases of C. albicans. CaSSK1 encodes a 674 amino acid protein (CaSsk1p) with an estimated molecular mass of 73·5 kDa and a basic isoelectric point (pI 9·5). It has a tripeptide (NKA) located in its C‐terminus, which resembles the peroxisomal signalling target type 1 sequence (PST1) of most of the peroxisomal matrix proteins. A homology search of CaSsk1p with other proteins in databases showed that the C‐terminus of CaSsk1p exhibits the greatest similarity with the C‐terminus of Ssk1p and Mcs4 from Saccharomyces cerevisiae and Schizosaccharomyces pombe, respectively. The response regulator domain of CaSsk1p contains the motifs that are characteristic of all response regulators, including the conserved aspartate and lysine residues as well as the putative aspartate, which is phosphorylated by a phosphohistidine residue. Finally, in spite of the structural similarities among CaSsk1p, Ssk1p and Mcs4, CaSsk1p does not seem to exhibit functional homology with these proteins. The Accession No. for the described sequence is AF084608, as filed in the EMBL/GenBank/DDBJ database. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
3.
In yeast, external signals such as high osmolarity or oxidant conditions activate the high osmolarity glycerol (HOG) mitogen‐activated protein kinase (MAPK) cascade pathway, which consists of two upstream branches, i.e. Sho1p and Sln1p and common downstream elements, including the Pbs2p MAPK kinase and the Hog1p MAPK. We recently showed that the Candida lusitaniae SLN1 gene, potentially encoding a histidine kinase receptor, is crucial for oxidative stress adaptation when the fungus grows as budding yeast and during the early steps of pseudohyphal development. In the current study, we characterized the SHO1 gene of this opportunistic fungus. Complete loss of SHO1 function causes profound defects in pseudohyphal differentiation, especially in high osmolarity and oxidative stress conditions, suggesting a crucial role of SHO1 in the pseudohyphae morphogenetic transitions. Moreover, when grown as budding yeast, the sho1Δ mutant revealed a sensitivity to compounds that interfere with the cell wall assembly, pointing to a potential role of Sho1p in cell wall biogenesis. However, the sho1Δ mutant does not display evident cell‐wall architecture modifications, such as aggregation phenotypes. Although not hypersusceptible to antifungals of clinical relevance, the sho1Δ mutants are susceptible to the filamentous fungi‐specific antifungals dicarboximides and phenylpyrroles. Finally, our findings highlight some significant phenotypic differences when the C. lusitaniae sho1Δ mutant is compared with the corresponding mutants described in Saccharomyces cerevisiae, Candida albicans and Aspergillus fumigatus. The GeneBank Accession No. for C. lusitaniae SHO1 gene is EU797514. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
We have isolated the Candida albicans gene for profilin, PFY1. Degenerate oligonucleotide primers based on regions of high homology were utilized to obtain a polymerase chain reaction-amplified copy of the gene. This was then used as a probe to isolate the gene from a C. albicans genomic library. Our studies indicate that the full-length gene is unstable in Escherichia coli. Several clones were sequenced, and the predicted amino acid sequence demonstrated homology with profilin proteins from other organisms, most notably Saccharomyces cerevisiae. Northern analysis revealed that the gene is expressed in C. albicans. Attempts to express the gene in S. cerevisiae cells were unsuccessful until the C. albicans promoter was replaced with an S. cerevisiae promoter. Functional complementation of the gene was demonstrated in S. cerevisiae profilin-requiring cells. Antibodies raised to isolated C. albicans profilin protein recognized a protein of the predicted molecular weight when the gene was expressed in S. cerevisiae cells. The sequence of the C. albicans PFY1 gene has been deposited in the Genome Sequence database under Accession Number L3783. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
In the framework of the European Union BIOTECH project for systematically sequencing the Saccharomyces cerevisiae genome, we determined the nucleotide sequence of a 43·7 kb DNA fragment spanning the centromeric region of chromosome XII. A novel approach was the distribution of sublibraries prepared by the DNA coordinator (J. Hoheisel, Heidelberg, FRG), using a new hybridization-based DNA mapping method, in order to facilitate ordered sequencing. The sequence contains 22 open reading frames (ORFs) longer than 299 bp, including the published sequences for ATS/DPS1, SCD25, SOF1, DRS1, MMM1, DNM1 and the centromeric region CEN12. Five putative ORF products show similarity to known proteins: the leucine zipper-containing ABC transporter L1313p to the yeast Ycf1p metal resistance protein, to the yeast putative ATP-dependent permease Yhd5p, to the yeast putative proteins Yk83p and Yk84p, to the human cystic fibrosis transmembrane conductance regulator protein (hCFTR) and to the human multidrug resistance-associated protein hMRP1; L1325p to the Drosophila melanogaster Pumilio protein, to the putative yeast regulatory protein Ygl3p and to the yeast protein Mpt5p/Htr1p; L1329p to human lipase A and gastric lipase, to rat lingual lipase and to the putative yeast triglyceride lipase Tgl1p; L1341p to the putative yeast protein Yhg4p; and the leucine zipper-containing L1361p to the two yeast proteins 00953p and Ym8156.08p and to the Arabidopsis thaliana protein HYP1. Eight ORFs show no homology to known sequences in the database, three small ORFs are internal and complementary to larger ones and L1301 is complementary overlapping the ATS/DPS1 gene. Additionally three equally spaced ARS consensus sequences were found. The nucleotide sequence reported here has been submitted to the EMBL data library under the accession number X91488.  相似文献   

6.
As part of the European BIOTECH programme, the nucleotide sequence of a 16691bp fragment from the left arm of chromosome IV of Saccharomyces cerevisiae has been deduced. Analysis of the sequence reveals the presence of 13 open reading frames (ORFs) larger than 100 codons. Five of these were previously identified as genes DUN1, PMT1, PMT5, SRP14 and DPR1. One putative protein, D2371p, contains an ATP-GTP binding site, and shares homology to the ArsA component of an Escherichia coli arsenical pump. No significant homology to any known protein has been found for the other ORFs. D2378p contains a zinc finger domain. The nucleotide sequence has been deposited at EMBL, with Accession Number X95644.  相似文献   

7.
8.
There is accumulating evidence for a large, highly conserved gene family of putative ATPases. We have identified 12 different members of this novel gene family (the YTA family) in yeast and determined the nucleotide sequences of nine of these genes. All of the putative gene products are characterized by the presence of a highly conserved domain of 300 amino acids containing specialized forms of the A and B boxes of ATPases. YTA1, YTA2, YTA3 and YTA5 exhibit significant similarity to proteins involved in human immunodeficiency virus Tat-mediated gene expression but more significantly to subunits of the human 26S proteasome. YTA1 and YTA2 are essential genes in yeast. Remarkably, the cDNA of human TBP-1 can compensate for the loss of YTA1. Preliminary experiments indicate that YTA1 is a component of the 26S protease complex from yeast. Our findings lead us to propose that YTA1, YTA2, YTA3 and YTA5 function as regulatory subunits of the yeast 26S proteasome. YTA10, YTA11 and YTA12 share significant homology with the Escherichia coli FtsH protein, and together with YTA4 and YTA6 may constitute a separate subclass within this family of putative ATPases.  相似文献   

9.
10.
Synthetic genes that confer resistance to the antibiotic nourseothricin in the pathogenic fungus Candida albicans are available, but genes conferring resistance to other antibiotics are not. We found that multiple C. albicans strains were inhibited by hygromycin B, so we designed a 1026 bp gene (CaHygB) that encodes Escherichia coli hygromycin B phosphotransferase with C. albicans codons. CaHygB conferred hygromycin B resistance in C. albicans transformed with ars2‐containing plasmids or single‐copy integrating vectors. Since CaHygB did not confer nourseothricin resistance and since the nourseothricin resistance marker SAT‐1 did not confer hygromycin B resistance, we reasoned that these two markers could be used for homologous gene disruptions in wild‐type C. albicans. We used PCR to fuse CaHygB or SAT‐1 to approximately 1 kb of 5′ and 3′ noncoding DNA from C. albicans ARG4, HIS1 and LEU2, and introduced the resulting amplicons into six wild‐type C. albicans strains. Homologous targeting frequencies were approximately 50–70%, and disruption of ARG4, HIS1 and LEU2 alleles was verified by the respective transformants' inabilities to grow without arginine, histidine and leucine. CaHygB should be a useful tool for genetic manipulation of different C. albicans strains, including clinical isolates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
We have sequenced a gene on chromosome III of Saccharomyces cerevisiae which codes for a putative serine/threonine protein kinase of 726 amino acids (calculated molecular weight 82 kDa). We have called this gene KIN82. The amino acid sequence of KIN82 is most similar to the cyclic nucleotide-dependent protein kinase subfamily and the protein kinase C subfamily. Gene disruption of KIN82 did not produce any phenotype when tested under a variety of conditons. Reduced stringency hybridizations revealed the presence of another genomic sequence with high homology to the carboxy-terminal catalytic domain of KIN82.  相似文献   

12.
Using a DNA fragment derived from the Saccharomyces cerevisiae protein kinase C gene (PKC1) as a probe to screen an ordered array library of genomic DNA from the dimorphic pathogenic fungus Candida albicans, the C. albicans PKC1 gene (CaPKC1) was isolated. The CaPKC1 gene is predicted to encode a protein of 1079 amino acids with 51% sequence identity over the entire length with the S. cerevisiae Pkc1 protein and is capable of functionally complementing the growth defects of a S. cerevisiae pkc1Δ mutant strain on hypo-osmotic medium. Deletion of both endogenous copies of the CaPKC1 gene in diploid C. albicans cells resulted in an osmotically remedial cell lysis defect of both the budding and the hyphal growth form and morphologically aberrant cells of the budding form. Despite these abnormalities, the transition between the two growth forms of C. albicans occurred normally in pkc1/pkc1 double disruptants. Capkc1p was modified at its C-terminus with two repeats of the Staphylococcus aureus protein A IgG-binding fragment (ZZ-sequence tag) and partially purified by chromatography on DEAE–Sepharose and IgG–Sepharose. In vitro, Capkc1p preferably phosphorylated the S. cerevisiae Pkc1p pseudosubstrate peptide and myelin basic protein, but not histones, protamine or dephosphorylated casein, and failed to respond to cofactors known to activate several mammalian PKC isozymes.  相似文献   

13.
14.
A DNA ligase-encoding gene (Ca CDC9) was cloned from Candida albicans by complementation of an ime-1 mutation in Saccharomyces cerevisiae. In this system, IME1 function was assayed using a S. cerevisiae strain with a ime2-promoter-lacZ gene fusion such that following transformation with a C. albicans genomic library, the presence of positive clones was indicated upon the addition of X-gal to sporulation media. Transforming fragments were subcloned in pGEM7 and sequenced. Sequence homology with several ATP-dependent DNA ligases from viruses, fission yeast, human, baker yeast and bacteria was observed. The sequence has been deposited in the EMBL data bank under the Accession Number X95001.  相似文献   

15.
The SEC4 gene product is a major component of the protein secretion machinery. More specifically, it is believed to play a pivotal role in targeting and fusion of secretory vesicles to the plasma membrane. Its recently described implication with the Saccharomyces cerevisiae Rho3p, which is required for directing growing points during bud formation, has prompted us to investigate the role and function of Sec4p in the morphological changes of the yeast pathogen Candida albicans. We have therefore cloned the C. albicans SEC4 gene. It encodes a 210 amino acids long protein sharing up to 75% homology to the S. cerevisiae homolog, when conserved changes are allowed. Its RNA is constitutively expressed in C. albicans grown under various physiological conditions. We also show that it can functionally complement a S. cerevisiae sec4 thermosensitive mutant. The sequence of the C. albicans SEC4 gene has been deposited in GenBank under Accession Number AF017183. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
The gene encoding ornithine decarboxylase, SPE1, from the pathogenic yeast Candida albicans has been isolated by complementation of an ornithine decarboxylase-negative (spe1Δ) strain of Saccharomyces cerevisiae. Four transformants, three of which contain plasmids with the SPE1 gene, were isolated by selection on polyamine-free medium. The C. albicans ornithine decarboxylase (ODC) showed high homology with other eukaryotic ODCs at both the amino acid and nucleic acid levels. The GenBank accession number for this gene is U85005. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号