首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the iterative solution of the boundary element equations arising from standard Galerkin boundary element discretizations of first‐kind boundary integral operators of positive and negative order. We construct efficient preconditioners on the basis of so‐called grey‐box algebraic multigrid methods that are well adapted to the treatment of boundary element matrices. In particular, the coarsening is based on an auxiliary matrix that represents the underlying topology in a certain sense. This auxiliary matrix is additionally used for the construction of the smoothers and the transfer operators. Finally, we present the results of some numerical studies that show the efficiency of the proposed algebraic multigrid preconditioners. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
A dual integral formulation for the interior problem of the Laplace equation with a smooth boundary is extended to the exterior problem. Two regularized versions are proposed and compared with the interior problem. It is found that an additional free term is present in the second regularized version of the exterior problem. An analytical solution for a benchmark example in ISBE is derived by two methods, conformal mapping and the Poisson integral formula using symbolic software. The potential gradient on the boundary is calculated by using the hypersingular integral equation except on the two singular points where the potential is discontinuous instead of failure in ISBE benchmarks. Based on the matrix relations between the interior and exterior problems, the BEPO2D program for the interior problem can be easily reintegrated. This benchmark example was used to check the validity of the dual integral formulation, and the numerical results match the exact solution well.  相似文献   

3.
A finite element constructed on the basis of boundary integral equations is proposed. This element has a flexible shape and arbitrary number of nodes. It also has good approximation properties. A procedure of constructing an element stiffness matrix is demonstrated first for one-dimensional case and then for two-dimensional steady-state heat conduction problem. Numerical examples demonstrate applicability and advantages of the method. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
Discretization of boundary integral equations leads, in general, to fully populated complex valued non-Hermitian systems of equations. In this paper we consider the efficient solution of these boundary element systems by preconditioned iterative methods of Krylov subspace type. We devise preconditioners based on the splitting of the boundary integral operators into smooth and non-smooth parts and show these to be extremely efficient. The methods are applied to the boundary element solution of the Burton and Miller formulation of the exterior Helmholtz problem which includes the derivative of the double layer Helmholtz potential—a hypersingular operator. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
An efficient iterative method for solution of the linear equations arising from a Hermite boundary integral approximation has been developed. Along with equations for the boundary unknowns, the Hermite system incorporates equations for the first‐order surface derivatives (gradient) of the potential, and is therefore substantially larger than the matrix for a corresponding linear approximation. However, by exploiting the structure of the Hermite matrix, a two‐level iterative algorithm has been shown to provide a very efficient solution algorithm. In this approach, the boundary function unknowns are treated separately from the gradient, taking advantage of the sparsity and near‐positive definiteness of the gradient equations. In test problems, the new algorithm significantly reduced computation time compared with iterative solution applied to the full matrix. This approach should prove to be even more effective for the larger systems encountered in three‐dimensional analysis, and increased efficiency should come from pre‐conditioning of the non‐sparse matrix component. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

6.
The present work deals with the application of the traction hypersingular boundary integral equation to approximate the stress tensor along the boundary, by making use of unit vectors that differ from the normal at the boundary. It is proved that special care is required in the evaluation of the free terms, in order to avoid insidious and unexpected errors. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Since the advent of the fast multipole method, large‐scale electromagnetic scattering problems based on the electric field integral equation (EFIE) formulation are generally solved by a Krylov iterative solver. A well‐known fact is that the dense complex non‐hermitian linear system associated to the EFIE becomes ill‐conditioned especially in the high‐frequency regime. As a consequence, this slows down the convergence rate of Krylov subspace iterative solvers. In this work, a new analytic preconditioner based on the combination of a finite element method with a local absorbing boundary condition is proposed to improve the convergence of the iterative solver for an open boundary. Some numerical tests precise the behaviour of the new preconditioner. Moreover, comparisons are performed with the analytic preconditioner based on the Calderòn's relations for integral equations for several kinds of scatterers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Boundary integral equations with extremely singular (i.e., more than hypersingular) kernels would be useful in several fields of applied mechanics, particularly when second‐ and third‐order derivatives of the primary variable are required. However, their definition and numerical treatment pose several problems. In this paper, it is shown how to obtain these boundary integral equations with still unnamed singularities and, moreover, how to efficiently and reliably compute all the singular integrals. This is done by extending in full generality the so‐called direct approach. Only for definiteness, the method is presented for the analysis of the deflection of thin elastic plates. Numerical results concerning integrals with singularities up to order r−4 are presented to validate the proposed algorithm. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
We study the problem of determining the initial condition in parabolic equations with time-dependent coefficients from integral observations which can be regarded as generalizations of point-wise interior observations. Our approach is new in the sense that for determining the initial condition we do not assume that the data available in the whole space domain at the final moment or in a subset of the space domain during a certain time interval, but some integral observations during a time interval. We propose a variational method in combination with Tikhonov regularization for solving the problem and then discretize it by finite difference splitting methods. The discretized minimization problem is solved by the conjugate gradient method and tested on computer to show its efficiency. Also as a by-product of the variational method, we propose a numerical scheme for estimating the degree of ill-posedness of the problem.  相似文献   

10.
The Galerkin matrices An from applications of the boundary element method to integral equations of the first kind usually need to be preconditioned. In the Laplace equation context, we highlight a family of preconditioners Cn that simultaneously enjoy two important properties: (a) An and Cn are spectrally equivalent, and (b) the eigenvalues of C An have a proper cluster at unity. In the Helmholtz equation context, we prove the spectral equivalence for the so‐called second Galerkin matrices and that the eigenvalues of C An still have a proper cluster at unity. We then show that some circulant integral approximate operator (CIAO) preconditioners belong to this family, including the well‐known optimal CIAO. Consequently, if we use the preconditioned conjugate gradients to solve the problems, the number of iterations for a prescribed accuracy does not depend on n, and, what is more, the convergence rate is superlinear. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
In this article, a non‐singular formulation of the boundary integral equation is developed to solve smooth and non‐smooth interior potential problems in two dimensions. The subtracting and adding‐back technique is used to regularize the singularity of Green's function and to simplify the calculation of the normal derivative of Green's function. After that, a global numerical integration is directly applied at the boundary, and those integration points are also taken as collocation points to simplify the algorithm of computation. The result indicates that this simple method gives the convergence speed of order N ?3 in the smooth boundary cases for both Dirichlet and mix‐type problems. For the non‐smooth cases, the convergence speed drops at O(N ?1/2) for the Dirichlet problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, a new global reanalysis technique for the efficient computation of stresses and error indicators in two‐dimensional elastostatic problems is presented. In the context of the boundary element method, the global reanalysis technique can be viewed as a post‐processing activity that is carried out once an analysis using Lagrangian elements has been performed. To do the reanalysis, the functional representation for the displacements is changed from Lagrangian to Hermite, introducing the nodal values of the tangential derivatives of those quantities as additional degrees of freedom. Next, assuming that the nodal values of the displacements and the tractions remain practically unchanged from the ones obtained in the analysis using Lagrangian elements, the tangent derivative boundary integral equations are collocated at each functional node in order to determine the additional degrees of freedom that were introduced. Under this scheme, a second system of equations is generated and, once it is solved, the nodal values of the tangential derivatives of the displacements are obtained. This approach gives more accurate results for the stresses at the nodes since it avoids the need to differentiate the shape functions in order to obtain the normal strain in the tangential direction. When compared with the use of Hermite elements, the global reanalysis technique has the attraction that the user does not have to give as input data the additional information required by this type of elements. Another important feature of the proposed approach is that an efficient error indicator for the values of the stresses can also be obtained comparing the values for the stresses obtained through the use of Lagrangian elements and the global reanalysis technique. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
A simple demonstration of the existence of the Cauchy principal value (CPV) of the strongly singular surface integral in the Somigliana Identity at a non-smooth boundary point is presented. First a regularization of the strongly singular integral by analytical integration of the singular term in the radial direction in pre-image planes of smooth surface patches is carried out. Then it is shown that the sum of the angular integrals of the characteristic of the tractions of the Kelvin fundamental solution is zero, a formula for the transformation of angles between the tangent plane of a suface patch and the pre-image plane at smooth mapping of the surface patch being derived for this purpose.  相似文献   

14.
In this paper, the material constant sensitivity boundary integral equation is presented, and its numerical solution proposed, based on boundary element techniques. The formulation deals with plane problems with general rectilinear anisotropy. Expressions for the computation of sensitivities for displacements, tractions, strains and stresses are derived, both for boundary and interior points. The sensitivities can be computed with respect to the bulk material properties or to the properties of part of the domain (inclusions, coatings, etc.). To assess the accuracy of the proposed approach, the computed results are compared to analytical ones derived from exact solutions obtained by complex potential theory, when possible, or finite difference derivatives otherwise. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
This paper is devoted to the development of efficient preconditioners for an iterative solution of equation sets arising in the Boundary Element Method (BEM). A standard collocation system of equations is transformed to a new basis associated with an auxiliary coarse division model for boundary unknowns and solved in this basis. New systems have rapidly decreasing coefficients and by neglecting a large number of them it is possible to construct readily invertible, sparse preconditioners for iterative procedures. The specific features of the transformed matrix can be attributed to the analytical properties of integral equations. Although the transformation is based on an auxiliary coarse division model, it does not require any additional operations with boundary elements. All manipulations necessary to construct the mapping are performed on the level of algebraic equations. Numerical experiments included in the paper confirm a high rate of convergence of the developed iterative scheme.  相似文献   

16.
The boundary integral equation that results from the application of the reciprocity theorem to non‐linear or non‐homogeneous differential equations generally contains a domain integral. While methods exist for the meshless evaluation of these integrals, mesh‐based domain integration is generally more accurate and can be performed more quickly with the application of fast multipole methods. However, polygonalization of complex multiply‐connected geometries can become a costly task, especially in three‐dimensional analyses. In this paper, a method that allows a mesh‐based integration in complex domains, while retaining a simple mesh structure, is described. Although the technique is intended for the numerical solution of more complex differential equations, such as the Navier–Stokes equations, for simplicity the method is applied to the solution of a Poisson equation, in domains of varying complexity. It is shown that the error introduced by the auxiliary domain subtraction method is comparable to the discretization error, while the complexity of the mesh is significantly reduced. The behaviour of the error in the boundary solution observed with the application of the new method is analogous to the behaviour observed with conventional cell‐based domain integration. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper a procedure to solve the identification inverse problems for two‐dimensional potential fields is presented. The procedure relies on a boundary integral equation (BIE) for the variations of the potential, flux, and geometry. This equation is a linearization of the regular BIE for small changes in the geometry. The aim in the identification inverse problems is to find an unknown part of the boundary of the domain, usually an internal flaw, using experimental measurements as additional information. In this paper this problem is solved without resorting to a minimization of a functional, but by an iterative algorithm which alternately solves the regular BIE and the variation BIE. The variation of the geometry of the flaw is modelled by a virtual strainfield, which allows for greater flexibility in the shape of the assumed flaw. Several numerical examples demonstrate the effectiveness and reliability of the proposed approach. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
This research is focused on the development of a fast spectral method to accelerate the solution of three-dimensional hypersingular boundary integral equations of potential theory. Based on a Galerkin approximation, the fast Fourier transform and local interpolation operators, the proposed method is a generalization of the precorrected-FFT technique to deal with double-layer potential kernels, hypersingular kernels and higher-order basis functions. Numerical examples utilizing piecewise linear shape functions are included to illustrate the performance of the method. The US Government retains a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.  相似文献   

19.
The formation of bubbles from an underwater orifice is studied by means of a boundary integral method. Since the bubble process is highly transient the flow field is assumed to be irrotational. A potential-flow boundary-integral formulation is employed to simulate the growth of a bubble from a needle in an unbounded domain and in a tube. The geometry of the problem is axisymmetric in these cases. A good agreement is found between the simulations and the experiment for air bubbles of radii ranging from a few hundred microns to several millimeters in water. A three-dimensional boundary integral method is developed to simulate bubble detachment from a non-vertical needle in an unbounded domain. Numerical instabilities commonly associated with the boundary integral technique are found to be even more severe for the three dimensional case and therefore an artificial damping term is introduced to eliminate these instabilities. Even though the simulations often fail just before the pinchoff point, the results compare favorably with the experiment.  相似文献   

20.
Complex boundary integral equations (Fredholm‐type regular or Cauchy‐type singular or even Hadamard–Mangler‐type hypersingular) have been used for the numerical solution of general plane isotropic elasticity problems. The related Muskhelishvili and, particularly, Lauricella–Sherman equations are famous in the literature, but several more extensions of the Lauricella–Sherman equations have also been proposed. In this paper it is just mentioned that the stress and displacement components can be very accurately computed near either external or internal simple closed boundaries (for anyone of the above equations: regular or singular or hypersingular, but with a prerequisite their actual numerical solution) through the appropriate use of the even more classical elementary Cauchy theorem in complex analysis. This approach has been already used for the accurate numerical computation of analytic functions and their derivatives by Ioakimidis, Papadakis and Perdios (BIT 1991; 31 : 276–285), without applications to elasticity problems, but here the much more complicated case of the elastic complex potentials is studied even when just an appropriate non‐analytic complex density function (such as an edge dislocation/loading distribution density) is numerically available on the boundary. The present results are also directly applicable to inclusion problems, anisotropic elasticity, antiplane elasticity and classical two‐dimensional fluid dynamics, but, unfortunately, not to crack problems in fracture mechanics. Brief numerical results (for the complex potentials), showing the dramatic increase of the computational accuracy, are also displayed and few generalizations proposed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号