首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The start gene CDC28 and the genetic stability of yeast   总被引:2,自引:0,他引:2  
The cdc28-srm mutation in Saccharomyces cerevisiae decreases spontaneous and induced mitochondrial rho- mutability and the mitotic stability of native chromosomes and recombinant circular minichromosomes. The effects of cdc28-srm on the genetic stability of cells support the hypothesis that links cell cycle regulation in yeast to changes in chromatin organization dependent on the start gene CDC28 (Hayles and Nurse, 1986).  相似文献   

2.
The cell division cycle gene CDC15 is essential for the late nuclear division in the yeast Saccharomyces cerevisiae. The amino acid sequence of the 974 amino acids/110 kDa CDC15 gene product, as deduced from the nucleotide sequence, includes an aminoterminal protein kinase domain which contains a primary sequence mosaic showing patterns specific for protein serine/threonine kinases besides those for protein tyrosine kinases. Many protein kinases non-essential for growth are known. CDC15 represents an essential protein kinase like CDC7 and CDC28. A carboxyterminal deletion of 32 amino acids renders the protein inactive.  相似文献   

3.
4.
The sequence of a 5653 bp DNA fragment of the right arm of chromosome II of Saccharomyces cerevisiae contains two unknown open reading frames (YBR1212 and YBR1213) next to gene CDC28. Gene disruption reveals both putative genes as non-essential. ORF YBR1212 encodes a predicted protein with 71% similarity and 65% identity (total polypeptide of 376 aa) with the 378 aa Sur1 protein of S. cerevisiae, while the putative product of ORF YBR1213, which is strongly expressed, has 28% identity with a Lactococcus lactis-secreted 45 kDa protein and 24% identity with the Saccharomyces cerevisiae AGA1 gene product. The total sequence of the fragment has been submitted to the EMBL databank (accession number X80224).  相似文献   

5.
The nucleotide sequence of a 5 kb EcoRI-NcoI fragment of chromosome IV, contiguous to gene POL3 (CDC2), has been determined. It contains three open reading frames: QRI1, QRI2 and QRI7. Two of them are essential genes. QRI7 is homologous to the Escherichia coli orfx gene. Accession number to EMBL/Genbank Data Library is X79380.  相似文献   

6.
Cdc24p and Cdc42p are involved in the control of cell polarity during the Saccharomyces cerevisiae cell cycle. Cdc42p is a member of the Ras superfamily of GTPases and Cdc24p displays limited amino-acid sequence similarity with the Dbl proto-oncoprotein, which acts to stimulate guanine-nucleotide exchange on human Cdc42p. We have performed several genetic experiments to test whether Cdc24p and Cdc42p interact within the cell. First, overexpression of Cdc24p suppressed the dominant-negative cdc42D118A allele. Second, overexpression of wild-type CDC24 and CDC42 genes together was a lethal event resulting in a morphological phenotype of large, round, unbudded cells, indicating a loss of cell polarity. Third, a cdc24ts cdc42ts double mutant exhibited a synthetic-lethal phenotype at the semi-permissive temperature of 30°C. These data suggest that Cdc24p and Cdc42p interact within the cell and that Cdc24p may be involved in the regulation of Cdc42p activity.  相似文献   

7.
RCS1, a gene involved in controlling cell size in Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
Cloning and sequencing of RCS1, Saccharomyces cerevisiae gene whose product seems to be involved in timing the budding event of the cell cycle, is described. A haploid strain in which the 3'-terminal region of the chromosomal copy of the gene has been disrupted produces cells that are, on average, twice the size of cells of the parental strain. The critical size for budding in the mutant is similarly increased, and the disruption mutation is dominant in a diploid heterozygous for the RCS1 gene. Spores from this diploid have a reduced ability to germinate, the effect being more pronounced in the spores carrying the disrupted copy of RCS1. However, disrupted cells recover from alpha-factor treatment equally as well as wild-type cells.  相似文献   

8.
The CDC33 gene of Saccharomyces cerevisiae belongs to the class II 'START' genes. Its product is required for the initiation of a new cell division cycle (Hartwell, 1974). Many results suggest that the cAMP signalling pathway is one of the major controlling elements of 'START'. Components of this pathway are encoded by class II 'START' genes. The aim of the present study is to determine whether or not the CDC33 gene interferes with the cAMP signalling pathway. We report here the molecular cloning of the CDC33 gene by complementation of the cdc33-1 thermosensitive mutant. The identity of the cloned gene is confirmed by site-specific reintegration and segregation analysis. This gene is transcribed into a 900-nucleotides mRNA and appears to be relatively abundant in the cell. We also show that the CDC33 gene product is essential for sporulation. cdc33-1 mutant cells are able to enter into the resting state. The cAMP intracellular pool is not modified when the cdc33-1 mutant is shifted to the restrictive temperature. The cdc33-1 mutation is not suppressed by other known elements of the cAMP cascade. All these results suggest that the CDC33 'START' gene does not interfere with the cAMP signalling pathway which controls cell division.  相似文献   

9.
We have investigated the effects on Saccharomyces cerevisiae of a novel antitumour agent (FCE24517 or Tallimustine) which causes selective alkylations to adenines in the minor groove of DNA. Tallimustine, added to wild-type cells for short periods, reduced the growth rate and increased the percentage of budded cells and delayed the cell cycle in the late S+G2+M phases. In the rad9Δ null mutant cells, Tallimustine treatment did not affect growth rate and the percentage of budded cells but greatly reduced cell viability compared to isogenic cells. Consistent with a role of RAD9 in inducing a transient delay in G2 phase which preserves cell viability, the potent cytotoxic effect of the drug on rad9Δ cells was alleviated by treatment with nocodazole. Tallimustine was also found to delay the resumption from G1 arrest of wild-type but not of rad9Δ cells. These data indicate that the effects of Tallimustine on cell cycle progression in yeast are mediated by the RAD9 gene product. From our data it appears that yeast could be a valuable model system to study the mode of action of this alkylating drug and of minor groove alkylators in general.  相似文献   

10.
以实验室现有菌种AY12a为出发菌株,URA3基因作为筛选标记,利用胞内重组,在MSN4基因的N端加上强启动子PGK1p以实现基因的过表达,最终通过多聚酶链式反应(PCR)验证,成功构建突变株AY12a-msn4。结果表明,该突变株具有一定的耐高温性能,在55 ℃条件下热击后仍能正常生长。同时将突变株AY12a-msn4与出发菌株AY12a进行玉米高温浓醪发酵,并测定发酵完成后的酒精度、残糖、48 h细胞存活率、CO2失重及发酵时间。结果表明,突变株AY12a-msn4发酵液酒精度提高3.85%,48 h细胞存活率上升,残糖含量下降14.5%。  相似文献   

11.
Repeated gene manipulations can be performed in yeast by excision of an introduced marker. Cassette modules containing a marker flanked by two direct repeat sequences of hisG or loxP have often been used for marker recycling, but these leave one copy of the repeats in the chromosome after excision. Genomic copies of a repeat can cause increased mistargeting of constructs containing the same repeats or unexpected chromosomal rearrangements via intra- or interchromosomal recombinations. Here, we describe a novel marker recycling procedure that leaves no scar in the genome, which we have designated seamless gene deletion. A 40 base sequence derived from an adjacent region to the targeted locus was placed in an integrating construct to generate direct repeats after integration. Seamless HIS3 deletion was achieved via a PCR fragment that consisted of a URA3 marker attached to a 40 base repeat-generating sequence flanked by HIS3 targeting sequences at both ends. Transformation of the designed construct resulted in his3 disruption and the generation of 40 base direct repeats on both sides of URA3 in the targeted locus. The resulting his3::URA3 disruptants were plated on 5-fluoroorotic acid medium to select for URA3 loss. All the selected colonies had lost URA3 precisely by recombination between the repeats, resulting in his3 deletion without any extraneous sequences left behind in the chromosome.  相似文献   

12.
建立CRISPR-Cas9介导的在Saccharomyces cerevisiae双倍体细胞中进行基因敲除的方法。以can1基因敲除后的表型验证该CRISPR-Cas9系统的有效性,can1基因的失活效率达到4%。利用该系统又分别敲除了pdc、adh3、adh2、adh1、 pdh等基因,单基因编辑效率分别为4/48、3/48、1/48、3/28、1/16。确定了基因连续敲除的方法流程,pdc、adh3、adh2三个基因全部敲除,整个过程用时17 d。探索了双基因一次转化同时敲除的方法,将adh5、lip两个基因同时敲除用时6 d,基因编辑效率分别为9/32和10/32。  相似文献   

13.
We report the sequences of two genomic regions from the pathogenic yeast Candida glabrata and their comparison to Saccharomyces cerevisiae. A 3 kb region from C. glabrata was sequenced that contains homologues of the S. cerevisiae genes TFB3, MRPL28 and STP1. The equivalent region in S. cerevisiae includes a fourth gene, MFA1, coding for mating factor a. The absence of MFA1 is consistent with C. glabrata's asexual life cycle, although we cannot exclude the possibility that a-factor gene(s) are located somewhere else in its genome. We also report the sequence of a 16 kb region from C. glabrata that contains a five-gene cluster similar to S. cerevisiae chromosome XI (including GCN3) followed by a four-gene cluster similar to chromosome XV (including HIS3). A small-scale rearrangement of gene order has occurred in the chromosome XI-like section.  相似文献   

14.
Nicotinamidase (NAMase) from the budding yeast, Saccharomyces cerevisiae, was purified by Ni(2+) affinity chromatography and gel filtration. N-terminal microsequencing revealed sequence identity with a hypothetical polypeptide encoded by the yeast YGL037C open reading frame sharing 30% sequence identity with Escherichia coli pyrazinamidase/nicotinamidase. A yeast strain in which the NAMase gene, hereafter named PNC1, was deleted shows a decreased intracellular NAD(+) concentration, consistent with the loss of NAMase activity in the null mutant. In wild-type strains, NAMase activity is stimulated during the stationary phase of growth, by various hyperosmotic shocks or by ethanol treatment. Using a P(PNC1)::lacZ gene fusion, we have shown that this stimulation of NAMase activity results from increased levels of the protein and requires stress response elements in the 5'non-coding region of PNC1. These results suggest that NAMase helps yeast cells to adapt to various stress conditions and nutrient depletion, most likely via the activation of NAD-dependent biological processes.  相似文献   

15.
In Saccharomyces cerevisiae, most of the LYS structural genes have been identified except the genes encoding homocitrate synthase and α-aminoadipate aminotransferase. Expression of several LYS genes responds to an induction mechanism mediated by the product of LYS14 and an intermediate of the pathway, α-aminoadipate semialdehyde (αAASA) as an inducer. This activation is modulated by the presence of lysine in the growth medium leading to an apparent repression. Since the first enzyme of the pathway, homocitrate synthase, is feedback inhibited by lysine, it could be a major element in the control of αAASA supply. During the sequencing of chromosome IV of S. cerevisiae, the sequence of ORF D1298 showing a significant similarity with the nifV gene of Azotobacter vinelandii was reported. Disruption and overexpression of ORF D1298 demonstrate that this gene, named LYS20, encodes a homocitrate synthase. The disrupted segregants are able to grow on minimal medium and exhibit reduced but significant homocitrate synthase indicating that this activity is catalysed by at least two isoenzymes. We have also shown that the product of LYS20 is responsible for the greater part of the lysine production. The different isoforms are sensitive to inhibition by lysine but only the expression of LYS20 is strongly repressed by lysine. The N-terminal end of homocitrate synthase isoform coded by LYS20 contains no typical mitochondrial targeting sequence, suggesting that this enzyme is not located in the mitochondria.  相似文献   

16.
17.
We describe a new procedure for the generation of plasmids containing a large promoter and terminator region of a gene of interest, useful for gene disruption. In a two-step polymerase chain reaction (PCR), a fragment, corresponding to the terminator and promoter regions separated by a 16 bp sequence containing a rare restriction site (e.g. AscI), is synthesized (T-P fragment). This PCR fragment is cloned in vectors presenting a rare blunt-end cloning site and a yeast marker for selection in Saccharomyces cerevisiae (TRP1, HIS3 and KanMX). The final plasmids are used directly for gene disruption after linearization by the enzyme (e.g. AscI) specific for the rare restriction site. This approach was used to disrupt three open reading frames identified during the sequencing of COS14–1 from chromosome XIV of S. cerevisiae.  相似文献   

18.
We adapted a fusion polymerase chain reaction (PCR) strategy to synthesize gene disruption alleles of any sequenced yeast gene of interest. The first step of the construction is to amplify sequences flanking the reading frame we want to disrupt and to amplify the selectable marker sequence. Then we fuse the upstream fragment to the marker sequence by fusion PCR, isolate this product and fuse it to the downstream sequence in a second fusion PCR reaction. The final PCR product can then be transformed directly into yeast. This method is rapid, relatively inexpensive, offers the freedom to choose from among a variety of selectable markers and allows one to construct precise disruptions of any sequenced open reading frame in Saccharomyces cerevisiae.  相似文献   

19.
The LUC gene coding for Photinus pyralis firefly luciferase was cloned in different yeast episomal plasmids in order to assess its possibilities as an in vivo reporter gene. Activity of the enzyme in transformed cells in vivo was measured by following light emission and assay conditions optimized in intact cells, with regard to oxygen concentration, temperature, cell concentration in assay mixtures and external ATP concentration. Among the factors tested, light emission was drastically influenced by the external pH in the assay (which resulted in a ten-fold amplification signal) and by substrate permeability. The growth phase of the cells was also important for the level of activity detected. Cloning of firefly luciferase gene under the control of different yeast-regulated promoters (ADH1, GAL1–10) enabled us to measure their strength which correlated well with previously described data. We conclude that firefly luciferase is an adequate gene reporter for the in vivo sensitive determination of gene expression and promoter strength in yeast.  相似文献   

20.
Gene disruption is an important method for genetic analysis in Saccharomyces cerevisiae. We have designed a polymerase chain reaction-directed gene disruption cassette that allows rapid disruption of genes in S. cerevisiae without previously cloning them. In addition, this cassette allows recycling of URA3, generating gene disruptions without the permanent loss of the ura3 marker. An indefinite number of disruptions can therefore be made in the same strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号