首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an a posteriori error indicator for the mimetic finite difference approximation of elliptic problems in the mixed form. We show that this estimator is reliable and efficient with respect to an energy‐type error comprising both flux and pressure. Its performance is investigated by numerically solving the diffusion equation on computational domains with different shapes, different permeability tensors, and different types of computational meshes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The a posteriori error estimation in constitutive law has already been extensively developed and applied to finite element solutions of structural analysis problems. The paper presents an extension of this estimator to problems governed by the Helmholtz equation (e.g. acoustic problems) that we have already partially reported, this paper containing informations about the construction of the admissible fields for acoustics. Moreover, it has been proven that the upper bound property of this estimator applied to elasticity problems (the error in constitutive law bounds from above the exact error in energy norm) does not generally apply to acoustic formulations due to the presence of the specific pollution error. The numerical investigations of the present paper confirm that the upper bound property of this type of estimator is verified only in the case of low (non‐dimensional) wave numbers while it is violated for high wave numbers due to the pollution effect. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
The miscible displacement of one incompressible fluid by another in a porous medium is governed by a system of two equations. One is an elliptic equation of the pressure and the other is a parabolic equation of the concentration of one of the fluids. Since the pressure appears in the concentration only through its velocity field, we choose a mixed finite element method to approximate the pressure equation and for the concentration we use the standard Galerkin method. We shall obtain an explicit a posteriori error estimator in L2(L2) for the semi‐discrete scheme applied to the non‐linear coupled system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
In part I of this investigation, we proved that the standard a posteriori estimates, based only on local computations, may severely underestimate the exact error for the classes of wave-numbers and the types of meshes employed in engineering analyses. We showed that this is due to the fact that the local estimators do not measure the pollution effect inherent to the FE-solutions of Helmholtz' equation with large wavenumber. Here, we construct a posteriori estimates of the pollution error. We demonstrate that these estimates are reliable and can be used to correct the standard a posteriori error estimates in any patch of elements of interest. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
The purpose of this work is to investigate the quality of the a posteriori error estimator based on the polynomial preserving recovery (PPR). The main tool in this investigation is the computer‐based theory. Also, a comparison is made between this estimator and the one based on the superconvergence patch recovery (SPR). The results of this comparison were found to be in favour of the estimator based on the PPR. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
The problem of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed. An a posteriori error estimator based on the minimum complementary energy principle is proposed which utilizes the displacement vector field computed from the finite element solution. This estimator, designed for p- and hp-extensions, is conceptually different from estimators based on residuals or patch recovery which are designed for h-extension procedures. The quality of the error estimator is demonstrated by examples. The results show that the effectivity index is reasonably close to unity and the sequences of p-distributions obtained with the error indicators closely follow the optimal trajectory. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
In References 1 and 2 we showed that the error in the finite-element solution has two parts, the local error and the pollution error, and we studied the effect of the pollution error on the quality of the local error-indicators and the quality of the derivatives recovered by local post-processing. Here we show that it is possible to construct a posteriori estimates of the pollution error in any patch of elements by employing the local error-indicators over the mesh outside the patch. We also give an algorithm for the adaptive control of the pollution error in any patch of elements of interest.  相似文献   

8.
This paper addresses the issue of a p‐adaptive version of the generalized finite element method (GFEM). The technique adopted here is the equilibrated element residual method, but presented under the GFEM approach, i.e., by taking into account the typical nodal enrichment scheme of the method. Such scheme consists of multiplying the partition of unity functions by a set of enrichment functions. These functions, in the case of the element residual method are monomials, and can be used to build the polynomial space, one degree higher than the one of the solution, in which the error functions is approximated. Global and local measures are defined and used as error estimator and indicators, respectively. The error indicators, calculated on the element patches that surrounds each node, are used to control a refinement procedure. Numerical examples in plane elasticity are presented, outlining in particular the effectivity index of the error estimator proposed. Finally, the ‐adaptive procedure is described and its good performance is illustrated by the last numerical example. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Methods for a posteriori error estimation for finite element solutions are well established and widely used in engineering practice for linear boundary value problems. In contrast here we are concerned with finite elasticity and error estimation and adaptivity in this context. In the paper a brief outline of continuum theory of finite elasticity is first given. Using the residuals in the equilibrium conditions the discretization error of the finite element solution is estimated both locally and globally. The proposed error estimator is physically interpreted in the energy sense. We then present and discuss the convergence behaviour of the discretization error in uniformly and adaptively refined finite element sequences.  相似文献   

10.
Component mode synthesis (CMS) is a classical method for the reduction of large‐scale finite element models in linear elasticity. In this paper we develop a methodology for adaptive refinement of CMS models. The methodology is based on a posteriori error estimates that determine to what degree each CMS subspace influence the error in the reduced solution. We consider a static model problem and prove a posteriori error estimates for the error in a linear goal quantity as well as in the energy and L2 norms. Automatic control of the error in the reduced solution is accomplished through an adaptive algorithm that determines suitable dimensions of each CMS subspace. The results are demonstrated in numerical examples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
We obtain fully computable a posteriori error estimators for the energy norm of the error in second‐order conforming and nonconforming finite element approximations in planar elasticity. These estimators are completely free of unknown constants and give a guaranteed numerical upper bound on the norm of the error. The estimators are shown to also provide local lower bounds, up to a constant and higher‐order data oscillation terms. Numerical examples are presented illustrating the theory and confirming the effectiveness of the estimator. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The partition of unity for localization in adaptive finite element method (FEM) for elliptic partial differential equations has been proposed in Carstensen and Funken (SIAM J. Sci. Comput. 2000; 21 : 1465–1484) and is applied therein to the Laplace problem. A direct adaptation to linear elasticity in this paper yields a first estimator ηL based on patch‐oriented local‐weighted interface problems. The global Korn inequality with a constant CKorn yields reliability for any finite element approximation uh to the exact displacement u. In order to localize this inequality further and so to involve the global constant CKorn directly in the local computations, we deduce a new error estimator µL. The latter estimator is based on local‐weighted interface problems with rigid body motions (RBM) as a kernel and so leads to effective estimates only if RBM are included in the local FE test functions. Therefore, the excluded first‐order FEM has to be enlarged by RBM, which leads to a partition of unit method (PUM) with RBM, called P1+RBM or to second‐order FEMs, called P2 FEM. For P1+RBM and P2 FEM (or even higher‐order schemes) one obtains the sharper reliability estimate . Efficiency holds in the strict sense of . The local‐weighted interface problems behind the implicit error estimators ηL and µL are usually not exactly solvable and are rather approximated by some FEM on a refined mesh and/or with a higher‐order FEM. The computable approximations are shown to be reliable in the sense of . The oscillations are known functions of the given data and higher‐order terms if the data are smooth for first‐order FEM. The mathematical proofs are based on weighted Korn inequalities and inverse estimates combined with standard arguments. The numerical experiments for uniform and adapted FEM on benchmarks such as an L‐shape problem, Cook's membrane, or a slit problem validate the theoretical estimates and also concern numerical bounds for CKorn and the locking phenomena. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This paper contains a first systematic analysis of a posteriori estimation for finite element solutions of the Helmholtz equation. In this first part, it is shown that the standard a posteriori estimates, based only on local computations, severely underestimate the exact error for the classes of wave numbers and the types of meshes employed in engineering analysis. This underestimation can be explained by observing that the standard error estimators cannot detect one component of the error, the pollution error, which is very significant at high wave numbers. Here, a rigorous analysis is carried out on a one-dimensional model problem. The analytical results for the residual estimator are illustrated and further investigated by numerical evaluation both for a residual estimator and for the ZZ-estimator based on smoothening. In the second part, reliable a posteriori estimators of the pollution error will be constructed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we develop an a posteriori error analysis for operator decomposition iteration methods applied to systems of coupled semilinear elliptic problems. The goal is to compute accurate error estimates that account for the combined effects arising from numerical approximation (discretization) and operator decomposition iteration. In an earlier paper, we considered ‘triangular’ systems that can be solved without iteration. In contrast, operator decomposition iterative methods for fully coupled systems involve an iterative solution technique. We construct an error estimate for the numerical approximation error that specifically addresses the propagation of error between iterates and provide a computable estimate for the iteration error arising because of the decomposition of the operator. Finally, we develop an adaptive discretization strategy to systematically reduce the discretization error.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The boundary value problem representing one time step of the primal formulation of elastoplasticity with positive hardening leads to a variational inequality of the second kind with some nondifferentiable functional. This paper establishes an adaptive finite element algorithm for the solution of this variational inequality that yields the energy reduction and, up to higher order terms, the R‐linear convergence of the stresses with respect to the number of loops. Applications include several plasticity models: linear isotropic‐kinematic hardening, linear kinematic hardening, and multisurface plasticity as model for nonlinear hardening laws. For perfect plasticity, the adaptive algorithm yields strong convergence of the stresses. Numerical examples confirm an improved linear convergence rate and study the performance of the algorithm in comparison with the more frequently applied maximum refinement rule. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Two triangular elements of class C0 developed on the basis of the principle of complementary work are applied in the static analysis of a thin plate. Some techniques to widen the versatility of the equilibrium approach for the finite element method are presented. Plates of various shapes subjected to diverse types of loading are considered. The results are compared with outcomes obtained by use of the displacement-based finite element method. By use of these two dual types of solutions, the error of the approximate solution is calculated. The lower and upper bounds for the strain energy are found.  相似文献   

17.
In this paper we present two types of local error estimators for the primal finite‐element‐method (FEM) by duality arguments. They are first derived from the (explicit) residual error estimation method (REM) and then—as a new contribution—from the (implicit) posterior equilibrium method (PEM) using improved boundary tractions, gained by local post‐processing with local Neumann problems, with applications in elastic problems. For the displacements a local error estimator with an upper bound is derived and also a local estimator for stresses. Furthermore—for better numerical efficiency—the residua are projected energy‐invariant onto reference elements, where the local Neumann problems have to be solved. Comparative examples between REM‐ and PEM‐type local estimators show superior effectivity indices for the latter one. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
We propose the study of a posteriori error estimates for time‐dependent generalized finite element simulations of heat transfer problems. A residual estimate is shown to provide reliable and practically useful upper bounds for the numerical errors, independent of the heuristically chosen enrichment functions. Two sets of numerical experiments are presented. First, the error estimate is shown to capture the decrease in the error as the number of enrichment functions is increased or the time discretization refined. Second, the estimate is used to predict the behaviour of the error where no exact solution is available. It also reflects the errors incurred in the poorly conditioned systems typically encountered in generalized finite element methods. Finally, we study local error indicators in individual time steps and elements of the mesh. This creates a basis towards the adaptive selection and refinement of the enrichment functions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The article deals with one of inverse problems of elastography: knowing displacement of compressed tissue finds the distribution of Young’s modulus in the investigated specimen. The direct problem is approximated and solved by the finite element method. The inverse problem can be stated in different ways depending on whether the solution to be found is smooth or discontinuous. Tikhonov regularization with appropriate regularizing functionals is applied to solve these problems. In particular, discontinuous Young’s modulus distribution can be found on the class of 2D functions with bounded variation of Hardy–Krause type. It is shown in the paper that a variant of Tikhonov regularization provides for such discontinuous distributions the so-called piecewise uniform convergence of approximate solutions as the error levels of the data vanish. The problem of practical a posteriori estimation of the accuracy for obtained approximate solutions is under consideration as well. A method of such estimation is presented. As illustrations, model inverse problems with smooth and discontinuous solutions are solved along with a posteriori estimations of the accuracy.  相似文献   

20.
This work describes concepts for a posteriori error estimation and adaptive mesh design for finite element models where the solution is subjected to inequality constraints. These methods are developed here for several model problems. Based on these examples, unified frameworks are proposed, which provide a systematic way of adaptive error control for problems stated in form of variational inequalities. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号