首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
欠驱动冗余度空间机器人优化控制   总被引:2,自引:2,他引:2       下载免费PDF全文
欠驱动控制是空间技术中容错技术的重要方面.本文研究了被动关节中有制动器的欠驱动冗余度空间机器人系统的运动优化控制问题.从系统动力学方程出发,分析了欠驱动冗余度空间机器人的优化能力和控制方法;给出了主、被动关节间的耦合度指标;提出了欠驱动冗余度空间机器人系统的“虚拟模型引导控制”方法,在这种方法中采用与欠驱动机器人机构等价的全驱动机器人作为模型来规划机器人的运动,使欠驱动系统在关节空间中逼近给出的规划轨迹,实现了机器人末端运动的连续轨迹运动优化控制;通过末关节为被动关节的平面三连杆机器人进行了仿真,仿真的结果证明了提出算法的有效性.  相似文献   

2.

Unlike a fully-actuated manipulator, the position-posture control of a planar underactuated manipulator (PUM) is more difficult, but the research on it is significant due to the wide practical applications. The existing control methods consider no external disturbance and are involved in the staged control idea, bringing the problems of nonsmooth control torque and time-consuming. A novel one-stage control approach is proposed in this paper for the position-posture control of a three-link PUM with the first free joint under the external disturbance. By analyzing the coupling relationship between its active joints and free joint, the position-posture control is transformed into the trajectory tracking control. Unlike the general trajectory planning, the trajectories of the active joints are planned to include several parameters. Meanwhile, the parameters are solved using a chaos particle swarm optimization algorithm to guarantee that all joint angles can reach to their desired angles. Then, to obtain the high trajectory tracking accuracy at every moment under the external disturbance, the nonlinear disturbance observer is constructed and a nonlinear fast terminal sliding mode tracking controller is designed. Finally, the feasibility and superiority of this strategy are verified via two simulations.

  相似文献   

3.
In this paper, adaptive control of free-floating space manipulators is considered. The dynamics based on the momentum conservation law for the free-floating space manipulator has non-linear parameterization properties. Therefore, the adaptive control based on a linear parameterization model cannot be used in this dynamics. In this paper, the dynamics of the free-floating space manipulator system are derived using the Dynamically Equivalent Model (DEM) approach. The DEM is a fixed-base manipulator system and allows us to linearly parameterize the dynamic equations. Using this linearly parameterized dynamic equation, an adaptive control method is developed to control the system in joint space. Parameter identification and torque calculations are done using the DEM dynamics. Simulations show that the tracking errors of the manipulator joints to a given desired trajectory become zero when the calculated torques act on the joints of the space manipulator system.  相似文献   

4.
《Advanced Robotics》2013,27(5):575-588
Underwater exploration requires mobility and manipulation. Underwater robotic vehicles (URV) have been employed for mobility, and robot manipulators attached to the underwater vehicle (i.e. rover) perform the manipulation. Usually, the manipulation mode takes place when the rover is stationary. The URV is then modeled as a passive joint and joints of the manipulator are modeled as active joints. URV motions are determined by inherent dynamic couplings between active and passive joints. Furthermore, the control problem becomes complex since there are many hydrodynamic terms as well as intrinsic model uncertainties to be considered. Tocope with these difficulties, we propose a disturbance observer-based robust control algorithm for underwater manipulators with passive joints. The proposed control algorithm is able to treat an underactuated system as a pseudo-active system in which passive joints are eliminated. Also, to realize a robust control method, a non-linear feedback disturbance observer is applied to each active joint. A four-jointed underwater robotic system with one passive joint is considered as an illustrative example. Through simulation, it is shown that the proposed control algorithm has good position tracking performance even in the presence of several external disturbances and model uncertainties.  相似文献   

5.
The dexterity and singularities of an underactuated robot   总被引:1,自引:0,他引:1  
Underactuated robots are robotic systems with more joints than actuators. A robot may be underactuated by design as in the case of a hyper‐redundant robot with passive joints or may become underactuated as a result of an actuator failure. In this article, we examine the dexterity of underactuated robots whose passive joints operate in either a locked or free‐swinging mode. The ability to an analyze the dexterity of an underactuated robot has important applications especially for the control of passive joints with brakes and for the fault tolerance analysis of an otherwise fully actuated kinematically redundant robot. The approach applied here is to use kinematics and dynamics‐based formulations of manipulator dexterity. We then characterize passive‐joint singularities, i.e., configurations where full end‐effector control is lost because one or more joints are passive instead of active. Lastly, we introduce a new characterization of joint‐limit singularities, which are configurations where full end‐effector control cannot be achieved because one or more joints are at their joint limits. © 2001 John Wiley & Sons, Inc.  相似文献   

6.
PPR型平面欠驱动机械臂的点位控制   总被引:4,自引:0,他引:4  
研究了PPR型平面欠驱动机械臂(第1个关节和第2个关节是移动关节且是受控的,第3个关节为被动的转动关节)在水平面运动的点位控制问题.首先,通过输入和坐标变换方法,系统的动力学方程被变换成二阶链式形式.其次,提出用反步法推导出保证系统指数渐近稳定的控制器.仿真结果表明,机械臂能够稳定地从任意初始位置运动到任意给定的位置,从而证明了控制器设计的有效性.  相似文献   

7.
空间机器人捕获运动目标的协调规划与控制方法   总被引:2,自引:0,他引:2  
徐文福  李成  梁斌  刘宇  强文义 《自动化学报》2009,35(9):1216-1225
针对目标以任意轨迹运动且其轨迹可能与``有保证工作空间'不相交的问题, 提出了空间机器人捕获运动目标的协调规划与控制方法. 首先, 根据手眼视觉测量数据, 预测目标的运动路径, 由此确定空间机器人对目标的最优交会姿态及最佳捕获臂型; 其次, 规划基座姿态及机械臂关节角的轨迹; 最后, 采用协调控制的方法, 实现空间机器人系统对运动目标的最优捕获(以最优交会姿态及最佳捕获臂型对目标进行捕获). 仿真结果表明了该方法的有效性.  相似文献   

8.
针对中间关节为欠驱动的二阶非完整平面三连杆机械臂,提出一种基于轨迹规划的末端点位置控制策略.首先,建立系统的动力学模型,并根据几何关系利用差分进化算法求取所有连杆与目标位置相对应的目标角度;然后,根据驱动关节与欠驱动关节的耦合关系,采用时间缩放法和双向法分别规划两根驱动连杆的两条轨迹,并利用遗传算法优化合适的第1连杆中间位置,将两条轨迹拼接成一条完整可达轨迹;最后,设计滑模变结构控制器以跟踪完整可达轨迹,实现系统从初始位置到目标位置的控制目标.数值仿真结果表明了所提出控制策略的有效性.  相似文献   

9.
In this paper, we use principle of virtual work to obtain the direct dynamics analysis of a 3-RRP spherical parallel manipulator, also called spherical star-triangle (SST) manipulator (Enferadi et al., Robotica 27, 2009). This manipulator has good accuracy and relatively a large workspace which is free of singularities (Enferadi et al., Robotica, 2009). The direct kinematics problem of this manipulator has eight solution (Enferadi et al., Robotica 27, 2009). Given a desired actuated joint trajectories, we first present an algorithm for selecting the admissible solution. Next, direct velocity and direct acceleration analysis are obtained in invariant form. The concept of direct link Jacobian matrices is introduced. The direct link Jacobian matrix relates motion of any link to vector velocity of actuated joints. Finally, dynamical equations of the manipulator are obtained using the principle of virtual work and the concept of direct link Jacobian matrices. This method allows elimination of constraint forces and moments at the passive joints from motion equations. Two examples are presented and trajectory of moving platform are obtained. Results are verified using a commercial dynamics modeling package as well as inverse dynamics analysis (Enferadi et al., Nonlinear Dyn 63, 2010).  相似文献   

10.
考虑机械臂末端轨迹跟踪控制问题,以跟踪逆运动学求解出的末端期望轨迹对应的各关节期望角度为控制目标.设计了一种基于三步法的控制器,该控制器由类稳态控制、可变参考前馈控制和误差反馈控制3部分组成.证明了该控制器可以通过控制机械臂的各关节力矩实现各关节实际角度对期望角度的状态跟踪,进而使得末端轨迹渐近跟踪期望轨迹,并且跟踪误差是输入到状态稳定的.仿真表明基于三步法控制器的空间机械臂末端可以渐近跟踪期望轨迹,并且该算法可以克服系统的末端负载质量变化等不确定性的影响.  相似文献   

11.
基于信号重构的可重构机械臂主动分散容错控制   总被引:1,自引:0,他引:1  
赵博  李元春 《自动化学报》2014,40(9):1942-1950
针对可重构机械臂系统传感器故障,提出一种基于信号重构的主动分散容错控制方法. 基于可重构机械臂系统模块化属性,采用自适应模糊分散控制系统实现正常工作模式时模块关节的轨迹跟踪控制. 当在线检测出位置或速度传感器故障时,分别采用数值积分器或微分跟踪器重构相应信号,并以之代替故障信号进行反馈实现系统的主动容错控制. 此方法充分利用了冗余信息,避免了故障关节控制性能的下降对其他关节的影响. 数值仿真结果验证了所提出容错控制方法的有效性.  相似文献   

12.
This paper investigates the constraint and coupling characteristics of underactuated manipulators by proposing an elastic model of the manipulator and examining the second order constraint equation. A dynamic model and a coupling constraint equation are developed from a Jacobian matrix and the Newton‐Euler formulation. The inertia matrix and the Christoffel tensor are analyzed and decomposed into the part concerning actuated joints and the part concerning passive joints. This decomposition is further extended to the dynamic coupling equation and generates an actuation coupling matrix and a dynamic coupling tensor. Two new dynamic coupling indices are hence identified. One is related to an actuation input and the other is related to centrifugal and Coriolis forces. The former reveals the dynamic coupling between the input and the acceleration of passive joints and gives the actuation effect on the passive joints. The latter reveals the dynamic coupling between the centrifugal and Coriolis forces and the acceleration of passive joints and provides the centrifugal and Coriolis effect on the acceleration of passive joints. The study reveals the coupling characteristics of an underactuated manipulator. This is then demonstrated in a three‐link manipulator and extended to a serial manipulator with passive prismatic joint. © 2003 Wiley Periodicals, Inc.  相似文献   

13.
This paper focuses on the study of an adaptive perturbation control which tracks a desired time-based trajectory as close as possible for all times over a wide range of manipulator motion and payloads. The proposed adaptive control is based on the linearized perturbation equations in the vicinity of a nominal trajectory. The controlled system is characterized by feedforward and feedback components which can be computed separately and simultaneously. The feedforward component computes the nominal torques from the Newton-Euler equations of motion to compensate all the interaction forces among the various joints. The feedback component consisting of recursive least-square identification and an optimal adaptive self-tuning control algorithm for the linearized system computes the perturbation torques which reduce the position and velocity errors of the manipulator along the nominal trajectory. A computer simulation study was conducted to evaluate the performance of the proposed adaptive control.  相似文献   

14.
针对具有参数不确定性和未知外部干扰的机械手轨迹跟踪问题提出了一种多输入多输出自适应鲁棒预测控制方法. 首先根据机械手模型设计非线性鲁棒预测控制律, 并在控制律中引入监督控制项; 然后利用函数逼近的方法逼近控制律中因模型不确定性以及外部干扰引起的未知项. 理论证明了所设计的控制律能够使机械手无静差跟踪期望的关节角轨迹. 仿真验证了本文设计方法的有效性.  相似文献   

15.
针对运动辅助过程中主/从运动生成的问题,在原有松岗(Matsuoka)数学模型的基础上引入适应系数建立了一个新的CPG模型,获得了理想的主/从关节目标轨迹;利用仿真分析手段调查研究了CPG模型的关键参数对其输出振荡的影响规律;以单关节运动辅助为控制对象,建立了相应的人机交互运动系统的动力学模型,利用基于MATLAB的仿真试验对CPG控制的有效性进行了验证。结果表明,根据CPG各个参数与输出的变化规律,适当调节各个参数可以获得理想的输出;CPG生成的运动轨迹有效规避了传统助力机器人控制模型中复杂的运动学和动力学解算;可根据实际需求调整外部参数[C]从而有效地生成辅助装置主/从运动模式;控制方法对单关节运动辅助具有明显效果。  相似文献   

16.
This paper introduces a robust adaptive control scheme for an underactuated free-flying space robot under non-holonomic constraints. An underactuated robot manipulator is defined as a robot that has fewer joint actuators than the number of total joints. Because, if one of the joints is out of order, it is so hard to repair the joint, especially in space, the control of such a robot manipulator is important. However, it is difficult to control an underactuated robot manipulator because of the reduced dimension of the input space, i.e. the non-holonomic structure of the underactuated system. The proposed scheme does not need to assume that the exact dynamic parameters must be known. It is analysed in joint space to control the underactuated robot mounted on the space station under parametric uncertainties and external disturbances. The simulation results have shown that the proposed method is very feasible and robust for a two-link planar free-flying space robot with one passive joint.  相似文献   

17.
An adaptive control scheme is developed for a robot manipulator to track a desired trajectory as closely as possible in spite of a wide range of manipulator motions and parameter uncertainties of links and payload.

The presented control scheme has two components: a nominal control and a variational control. The nominal control, generated from direct calculation of the manipulator dynamics along a desired trajectory, drives the manipulator to a neighbourhood of the trajectory. Then a new adaptive regulation scheme is devised based on the Lyapunov direct method, which generates the variational control that regulates the perturbation in the vicinity of the desired trajectory.  相似文献   

18.
针对机器人辅助患肢被动康复训练过程中关节活动度(ROM)及运动控制参数不能随患肢病情实时调整的问题,提出一种新的模糊自适应关节被动运动闭环监督控制方法.该方法首先根据患肢关节活动恢复程度设计上层监督控制器,得到符合患肢病情的关节期望运动范围;再通过设计下层闭环位置跟踪控制器,控制机器人平稳地牵引患肢关节沿目标轨迹进行训练.临床实验结果验证了所提算法的有效性.  相似文献   

19.
《Advanced Robotics》2013,27(4):451-476
In this paper, the non-holonomic characteristic of a free-floating space robotic system is used to plan the path of the manipulator joints, by whose motion the base attitude and the manipulator joints attain the desired states. Here, we parameterize the joint trajectory using sinusoidal functions, whose arguments are high-order polynomials. Then, we define the cost function for optimization according to the constraint conditions and the accuracy of the space robot. Finally, genetic algorithms (GAs) are used to search for the solutions of the parameters. Compared with others, our approach has advantages as follows. (i) The motion of the manipulator and the disturbance on the base are practically constrained. (ii) The dynamic singularities cannot affect the algorithm since only the direct kinematic equations are utilized. (iii) The planned path is smooth and more applicable for the control of the manipulator. (iv) The convergence of the algorithm is not affected by the attitude singularity since the orientation error is represented by quaternion, which is globally singularity-free. The simulation results of the spacecraft with a 6-d.o.f. manipulator verify the performance and the validity of the proposed method.  相似文献   

20.
为实现对多自由度机械臂关节运动精确轨迹跟踪,提出一种基于非线性干扰观测器的广义模型预测轨迹跟踪控制方法。针对机械臂轨迹跟踪运动学子系统,采用广义预测控制(Generalized Predictive Control,GPC)方法设计期望的虚拟关节角速度。对于机械臂轨迹跟踪动力学子系统,考虑机械臂的参数不确定性和未知外界扰动,利用GPC方法设计关节力矩控制输入,基于非线性干扰观测器方法实时估计和补偿系统模型中的不确定性。在李雅普诺夫稳定性理论框架下证明了机械臂关节角位置和角速度的跟踪误差最终收敛于零的小邻域。数值仿真验证了所提出控制方法的有效性和优越性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号