首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary aim of this paper is to provide an insight on the effect of the location of organoclay on the micro- and nano-scale deformation processes in melt-compounded nylon 66/organoclay/SEBS-g-MA ternary nanocomposites prepared by different blending sequences. In addition, the deformation processes of the ternary nanocomposites were compared to the binary nanocomposites (nylon 66/organoclay and nylon 66/SEBS-g-MA) and neat nylon 66. The incorporation of SEBS-g-MA particles toughened nylon 66 markedly; but the flexural modulus and strength were both reduced. Conversely, the use of organoclay increased the modulus but decreased the fracture toughness of nylon 66. Nylon 66/SEBS-g-MA/organoclay ternary nanocomposites exhibited balanced elastic stiffness and toughness. Stress-whitening studies of the fracture surfaces in terms of gray level were also performed and an attempt was made to correlate the optical reflectivity characteristics with fracture toughness. It was concluded that the capability of SEBS-g-MA particles to cavitate was decreased by the presence of organoclay in the SEBS-g-MA phase, resulting in reduced toughening efficiency. The best micro-structure for toughness and other mechanical properties is thus to maximize the amount of exfoliated organoclay in the nylon 66 matrix rather than to have it embedded in the finely dispersed SEBS-g-MA particles.  相似文献   

2.
This study focuses on achieving high stiffness/strength and high fracture toughness in nylon 6/organoclay nanocomposites prepared via melt compounding by incorporating a maleic anhydride grafted polyethylene–octene elastomer (POE-g-MA) as a toughening agent. Mechanical test results indicated that the ternary nanocomposites exhibited higher stiffness than nylon 6/POE-g-MA binary blends at any given POE-g-MA content. More importantly, the brittle–ductile transition of nylon 6/POE-g-MA blends was not impaired in the presence of organoclay for the compositions prepared in this study. TEM analysis shows that organoclay layers and elastomer particles were dispersed separately in nylon 6 matrix. In the binary nanocomposite, no noticeable plastic deformation was observed around the crack tip. In the ternary nanocomposites, the presence of organoclay in the matrix provided maximum reinforcement to the polymer, while their absence in the elastomer particles allowed the latter to promote high fracture toughness via particle cavitation and subsequent matrix shear yielding. The partially exfoliated clay layers also delaminated and hence, adding to the total toughness of the nanocomposites.  相似文献   

3.
Tensile tests were conducted on nylon 6/organoclay nanocomposites, with and without POE-g-MA rubber particles, over a range of temperatures and strain rates 10−4–10−1 s−1. It was shown that the 0.2% offset yield strength varied with both temperature and strain rate which could be described by the Eyring equation thus providing results on the activation energy and activation volume for the physical processes involved. In addition, their tensile deformation mechanisms were characterized using the tensile dilatometry technique to differentiate the dilatational processes (e.g., voiding/debonding caused by the organoclay and rubber particles or matrix) and shear yielding (e.g., matrix with zero volume change). Dilatometric responses indicated that the presence of POE-g-MA rubber particles did not alter the shear deformation mode of neat nylon 6. In contrast, the presence of organoclay layers changed the tensile yield deformation behavior of nylon 6 matrix from dominant shear yielding to combined shear yield plus dilatation associated with delaminations of nanoclay platelets. In nylon 6/organoclay/POE-g-MA ternary nanocomposite, the volume strain response indicated that the POE-g-MA rubber particles promoted shear deformation and suppressed delamination of the organoclay layers. Supports for the deformation mechanisms deduced from the tensile dilatometry tests were corroborated by optical microscopy and transmission electron microscopy micrographs of the studied materials.  相似文献   

4.
The nanomechanical properties of nylon 6, nylon 6/exfoliated clay and nylon 6/non-exfoliated clay nanocomposites have been investigated from room temperature to ?10 °C in a controlled environment with humidity less than 1% RH. The hardness, elastic modulus and creep resistance of nylon 6 were improved in the nanocomposites across the temperature range. However, the effective reinforcement of the clay depended on the temperature due to the change between the glassy and transition states in the nylon. The exfoliated clay nanocomposite showed the greater improvements than in the non-exfoliated clay nanocomposite at all testing temperatures due to the improved constraint of the polymer chains by the clay platelets in the exfoliated structure. The surface mechanical properties of nylon 6 and the nanocomposites were also found to be highly sensitive to the moisture level during the tests; increasing the humidity in the room temperature tests resulted in a dramatic decrease in hardness and stiffness due to plasticisation by water molecules. The kinetics of the re-humidification process on nylon 6 were studied by monitoring the change in nanoindentation response. Analysis of the indentation creep revealed a significant change in the strain rate sensitivity when the humidity of the near-surface region probed by nanoindentation was in the vicinity of the glass transition.  相似文献   

5.
The potential to improve the mechanical, thermal, and optical properties of poly(methyl methacrylate) (PMMA)/clay nanocomposites prepared with clay containing an organic modifier was investigated. Pristine sodium montmorillonite clay was modified using cocoamphodipropionate, which absorbs UVB in the 280–320 nm range, via ion exchange to enhance the compatibility between the clay platelets and the methyl methacrylate polymer matrix. PMMA/clay nanocomposites were synthesized via in situ free-radical polymerization. Three types of clay with various cation-exchange capacities (CEC) were used as inorganic layered materials in these organic–inorganic hybrid nanocomposites: CL42, CL120, and CL88 with CEC values of 116, 168, and 200 meq/100 g of clay, respectively. We characterized the effects of the organoclay dispersion on UV resistance, effectiveness as an O2 gas barrier, thermal stability, and mechanical properties of PMMA/clay nanocomposites. Gas permeability analysis demonstrated the excellent gas barrier properties of the nanocomposites, consistent with the intercalated or exfoliated morphologies observed. The optical properties were assessed using UV–Visible spectroscopy, which revealed that these materials have good optical clarity, UV resistance, and scratch resistance. The effect of the dispersion capability of organoclay on the thermal properties of PMMA/clay nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry; these analyses revealed excellent thermal stability of some of the modified clay nanocomposites.  相似文献   

6.
使带有环氧基团的三缩水甘油基对氨基苯酚(TGPAP)分别与溴代正丁烷(BB)、2-溴乙醇(BE)反应,合成了反应型粘土有机修饰剂溴化(正定烷基)双环氧基(4-环氧醚基)铵(TGPAPB)和溴化(2-羟乙基)双环氧基(4-环氧醚基)铵(TGPAPE)。用这两种修饰剂改性粘土,分别制备出具有相同反应官能团但与环氧树脂的相容性略有不同的两种有机化粘土(B-Clay和E-Clay)。再用“粘土淤浆复合法”制备出两种环氧树脂/粘土纳米复合材料,研究了两种反应型有机修饰剂对纳米复合材料的结构和性能的影响。结果表明:带有羟基的E-Clay以高度无规剥离形式均匀分布在环氧树脂基体中;而B-Clay则形成了无规剥离/插层混合结构。两种粘土均参与固化反应在环氧树脂基体和粘土片层间产生了较强的界面作用力,从而显著提高了纳米复合材料的拉伸强度。粘土质量分数为3%的两种纳米复合材料,其拉伸强度分别达到32.4 MPa(E-Clay)和28.0 MPa(B-Clay),比对应的纯环氧树脂聚合物分别提高了76.47%和52.51%。同时,这两种纳米复合材料的玻璃化转变温度(Tg)也略有提高。  相似文献   

7.
Melt-compounding is a technique which has been commonly used for producing polymer–clay nanocomposites with enhanced mechanical, thermal, and physical properties. Twin-screw extruders have been found to effectively exfoliate the clay platelets due to their high shear intensity. However, concerns about polymer and organoclay degradation have been raised in some studies. In this investigation, a composite of nylon 6–Cloisite 30B with fully exfoliated and well-dispersed clay particles was produced using a single-screw extruder and hence with limited polymer degradation. We show that processing temperature plays an important role in enhancing dispersion and that reprocessing at a higher temperature can enhance both dispersion and exfoliation and thus can result in composites with superior properties. We attempt to elucidate how the change in melt viscosity—coupled with the change in processing temperature—affects clay exfoliation and dispersion.  相似文献   

8.
采用一种新型的超细全硫化粉末橡胶/蒙脱土复合粉末(UFPRM),可以制备出剥离型的尼龙6/橡胶/天然粘土(尼龙6/UFPRM)纳米复合材料,所用的橡胶是一种具有特殊结构的超细全硫化粉末橡胶(UFPR).微观分析表明,橡胶粒子在尼龙6基体中分散良好,同时天然粘土在橡胶粒子之间的基体中剥离.在一定份数下,复合粉末可以同时提高尼龙6的韧性、刚性及耐热性;随着复合粉末含量的增加,材料的冲击强度进一步增加.而且,复合粉末对高分子量尼龙6的增强、增韧效果好于低分子量尼龙6.进一步研究发现,在适当的剪切速率下,尼龙6/橡胶/天然粘土纳米复合材料可以获得较好的综合力学性能.  相似文献   

9.
In this study, processing, morphology and properties of poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide) (PEO-PPO-PEO) triblock copolymer and clay modified cyanate ester/epoxy hybrid nanocomposites were investigated. The PEO-PPO-PEO triblock copolymer preferentially reaction-induced microphase separate into spherical micelles in the cyanate ester/epoxy matrix. PEO-PPO-PEO was used as both nanostructuring agent for cyanate ester/epoxy blended resin and thus the predominantly intercalated and few exfoliated platelets of were also observed with clay, which successfully reduced the brittleness of the cyanate ester/epoxy blended resin increasing the toughness of designed materials. The stiffness and heat resistance of the neat BCE/EP resin could be retained in the BCE/EP/F68/clay hybrid nanocomposites. The optimum property enhancement was observed in the hybrid nanocomposites containing 5 wt% PEO-PPO-PEO and 3 wt% clay. The thermo/mechanical properties of the hybrid nanocomposites depend on microstructure, dispersion state and the ratio between organic and inorganic modifiers content.  相似文献   

10.
Thermoset/montmorillonite nanocomposites were fabricated and their elastic modulus was measured using experimental modal analysis. The morphology of the nanocomposite was considered as a distribution of several components: exfoliated clay platelets, intercalated clay layers, primary particles and clay agglomerates. A novel homogenisation model, which involves a five-phase sequence based on the Halpin–Tsai equations, was developed to calculate the elastic modulus of the nanocomposites. This model was then used to quantify the morphology of the nanocomposites by back calculating the exfoliation, intercalation and agglomeration fractions from the measured values of the elastic modulus. Additionally, this approach led to quantify the efficiency of the fabrication process, which proved to be optimal for 2.5% clay content.  相似文献   

11.
The primary focus of this work is to elucidate the location and extent of exfoliation of clay on fracture (under both static and dynamic loading conditions) of melt-compounded nylon 66/clay/SEBS-g-MA ternary nanocomposites fabricated by different blending sequences. Distinct microstructures are obtained depending on the blending protocol employed. The state of exfoliation and dispersion of clay in nylon 66 matrix and SEBS-g-MA phase are quantified and the presence of clay in rubber is shown to have a negative effect on the toughness of the nanocomposites. The level of toughness enhancement of ternary nanocomposites depends on the blending protocol and the capability of different fillers to activate the plastic deformation mechanisms in the matrix. These mechanisms include: cavitation of SEBS-g-MA phase, stretching of voided matrix material, interfacial debonding of SEBS-g-MA particles, debonding of intercalated clay embedded inside the SEBS-g-MA phase, and delamination of intercalated clay platelets. Based on these results, new insights and approaches for the processing of better toughened polymer ternary nanocomposites are discussed.  相似文献   

12.
Polyamide 11 (PA11)/clay, Poly(vinylidene fluoride) (PVDF)/clay and PVDF/PA11/clay nanocomposites were prepared by melt processing using a high shear extruder. Two types of organoclay with different modified alkyl tails and different polarities were used for PA11 and PVDF nanocomposites. PA11 nanocomposites derived from an organoclay having one alkyl tail show a well-exfoliated morphology but no crystal form transformation, whereas those derived from an organoclay having two alkyl tails give a little worse clay dispersion with the clear alpha to gamma crystal form transition with the addition of the clay. In contrast, the PVDF composites derived from the two organoclays result in a poor dispersion. In addition, PVDF/PA11 blend nanocomposites with a novel morphology have been fabricated using the high-shear extruder. It was found that the clay platelets were selectively dispersed in the PA11 phase with the size of larger than 200 nm, while no clay platelets were located in the PVDF phase and in the PA11 nanodomains with the size of smaller than 200 nm. Moreover, the addition of organoclay shows significant effects on the phase structure of PVDF/PA11 blends.  相似文献   

13.
A study on the dynamic mechanical properties of polypropylene copolymer/ethylene–vinyl acetate/organoclay (PP-EP/EVA/C20A) nanocomposites is presented. Nanocomposites were obtained by melt blending. Morphology consisting of intercalated–exfoliated clay nanolayers preferentially located within the EVA phase was observed by transmission electron microscopy (TEM) and wide angle X-ray diffraction (WAXD). Polar groups of vinyl acetate in the EVA facilitated the polymer–clay interactions. Changes in the glass transition temperature (Tg) were correlated with changes in the clay intercalation–exfoliation levels. The highly reinforced with intercalated–exfoliated clay layers EVA phase was considered as the origin of the improvement on mechanical properties of the ternary nanocomposites and is associated with the increase on viscosity, heat deflection temperature (HDT), and storage modulus.  相似文献   

14.
Thermoplastic starch/poly(vinyl alcohol) (PVOH)/clay nanocomposites, exhibiting the intercalated and exfoliated structures, were prepared via melt extrusion method. The effects of clay cation, water, PVOH and clay contents on clay intercalation and mechanical properties of nanocomposites were investigated. The experiments were carried out according to the Taguchi experimental design method. Montmorillonite (MMT) with three types of cation or modifier (Na+, alkyl ammonium ion, and citric acid) was examined. The prepared nanocomposites with modified montmorillonite indicated a mechanical improvement in the properties in comparison with pristine MMT. It was also observed that increases in tensile strength and modulus would be attained for nanocomposite samples with 10%, 5% and 4% (by weight) of water, PVOH and clay loading, respectively. The clay intercalation was examined by X-ray diffraction (XRD) patterns. The chemical structure and morphology of the optimum sample was also probed by FTIR spectroscopy and transmission electron microscopy (TEM).  相似文献   

15.
This work dealt with the morphology and permeability properties of polypropylene/organoclay nanocomposites prepared using an acrylic acid grafted polypropylene (PP-g-AA) as compatibilizing agent. Two PP-g-AA containing the same acrylic acid content (6 wt.%) and having different molar masses were tested. The o-MMT content was 0, 1 or 5 wt.% and the PP-g-AA/o–MMT mass ratio was 0/1, 1/1, 2/1 or 5/1. Results of wide angle X-ray scattering (WAXS) and transmission electron microscopy (TEM) showed that without the PP-g-AA, the o-MMT was dispersed in the PP/o-MMT in a micrometer scale, similar to a conventional microcomposite. With the PP-g-AA, the o-MMT was much better dispersed and its interlayers were intercalated and partly exfoliated by the polymer chains. CO2 permeability values decreased for all samples with the incorporation of the organoclay. The compatibilized samples showed a more significant reduction in CO2 permeability, up to 50% when compared to the neat PP. In general, the PP-g-AA acted satisfactorily in compatibilizing PP/organoclay nanocomposites. Moreover, samples prepared with the compatibilizer/organoclay ratio of 5/1 had better barrier properties.  相似文献   

16.
Density functional theory was used to study the interfacial interactions between clay and polymer in polymer/clay nanocomposites, with a focus on nylon 6 matrix. The binding energy and the distance between nylon 6 and clay surface were predicted. The effect of the isomorphic substitution in clay octahedral and tetrahedral layer on the strength of the interfacial interactions was also examined. The interaction strength between nylon 6 and clay surface was found to increase with the degree of isomorphic substitution. And the magnitude of the binding forces, reflected from the calculated binding energies, was found to be higher when the substitution took place in tetrahedral layer (e.g., Al3+ for Si4+). No covalent bonds were observed between nylon 6 and the clay, which means that the chemical structures of the clay and nylon 6 are unchanged during the mixing process.  相似文献   

17.
介绍了采用各种插层荆插层处理蒙脱土并用插层聚合、熔融插层法制备聚苯乙烯/粘土纳米复合材料及其结构特性、性能的研究进展.并对乳液聚合法制备聚苯乙烯/粘土纳米复合材料及其性能进行了简单介绍。  相似文献   

18.
This work aims to investigate the structure–property relationship in ternary nanocomposites consisting of polypropylene as the matrix, nanoclay as the reinforcement and polyamide 6 as the intermediate phase. In this regard, composites of polypropylene/organoclay, polyamide/organoclay, blends of polypropylene/polyamide, and ternary nanocomposites of polypropylene/polyamide/layered silicate with and without compatibilizer were produced via melt compounding. Nanostructure was investigated by wide-angle X-ray diffraction and transmission electron microscopy. Scanning electron microscopy was employed to study the microstructure. Modulus of elasticity and yield strength were measured by uniaxial tensile test. Results show that silicate layers can only be observed inside polyamide particles. Moreover, polypropylene was unable to intercalate the grade of organoclay used in this study. While polyamide/organoclay system exhibited an exfoliated structure, the nanostructure of ternary nanocomposites was chiefly intercalated, due to the high concentration of silicate layers inside polyamide particles. Incorporation of organoclay into the polypropylene/polyamide system was seen to have a noticeable effect on the shape and size of polyamide particles. In addition, elastic modulus and yield strength were observed to be directly affected by incorporation of nanoclay and compatibilizer into the polypropylene matrix, respectively. The simultaneous presence of the two constituents in the system resulted in samples with superior mechanical properties in the elastic as well as the plastic deformation regime.  相似文献   

19.
We demonstrate a novel in situ polymerization technique to develop localized polymer coatings on the surface of dispersed pristine graphene sheets. Graphene sheets show great promise as strong, conductive fillers in polymer nanocomposites; however, difficulties in dispersion quality and interfacial strength between filler and matrix have been a persistent problem for graphene-based nanocomposites, particularly for pristine graphene. With this in mind, a physisorbed polymer layer is used to stabilize graphene sheets in solution. To create this protective layer, we formed an organic microenvironment around dispersed graphene sheets in surfactant solutions, and created a nylon 6, 10 or nylon 6, 6 coating via interfacial polymerization. Technique lies at the intersection of emulsion and admicellar polymerization; a similar technique was originally developed to protect luminescent properties of carbon nanotubes in solution. These coated graphene dispersions are aggregation-resistant and may be reversibly redispersed in water even after freeze-drying. The coated graphene holds promise for a number of applications, including multifunctional graphene-polymer nanocomposites.  相似文献   

20.
环氧树脂/粘土纳米复合材料的制备与性能研究   总被引:21,自引:7,他引:21       下载免费PDF全文
研究了有机蒙脱土在环氧树脂中的插层和剥离行为,制备了两种环氧树脂/蒙脱土纳米复合材料并测试了其力学性能。实验结果表明,环氧树脂与有机土的相容性好,二者混合时环氧树脂很容易插入到粘土层间。使用经不同有机阳离子处理的两种有机蒙脱土,分别制得插层型和剥离型环氧/粘土纳米复合材料,力学性能结果表明,剥离型纳米复合材料的性能优于同组成的插层型纳米复合材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号