首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
K.S. Varde 《Fuel》1984,63(5):713-715
Bulk moduli of fuel blends containing different concentrations of vegetable oil and diesel have been measured at three different fuel temperatures. Presence of vegetable oil in the mixture increases the bulk modulus over that for the straight diesel fuel. For a given fuel pressure and fuel temperature, bulk modulus of the blend increases as the concentration of the vegetable oil in the blend increases. Increase in fuel temperature lowers the values of bulk moduli at all fuel pressures.  相似文献   

2.
Ertan Alptekin 《Fuel》2009,88(1):75-80
Characterizing of the fuel properties of diesel fuels, alternative fuels and their blends can assist the researchers who work on alternative fuels for diesel engines. Therefore, in this study, methyl esters were produced from five edible vegetable oils (sunflower, soybean, canola, corn and cottonseed) and blended with two different diesel fuels at 2%, 5%, 10%, 20%, 50% and 75% on a volume basis to characterize the key fuel properties of the blends such as density, viscosity, pour point, distillation temperatures and flash point. The results showed that the fuel properties of the blends were very close to those of diesel fuels at low concentrations upto 20% of methyl esters.  相似文献   

3.
Efforts are under way to reduce diesel engine emissions (DEE) and their content of carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAH). Previously, we observed reduced PAH emissions and DEE mutagenicity caused by reformulated or newly developed fuels. The use of rapeseed oil as diesel engine fuel is growing in German transportation businesses and agriculture. We now compared the mutagenic effects of DEE from rapeseed oil (RSO), rapeseed methyl ester (RME, biodiesel), natural gas-derived synthetic fuel (gas-to-liquid, GTL), and a reference petrodiesel fuel (DF) generated by a heavy-duty truck diesel engine using the European Stationary Cycle. Mutagenicity of the particle extracts and the condensates was tested using the Salmonella typhimurium mammalian microsome assay with strains TA98 and TA100. The RSO particle extracts increased the mutagenic effects by factors of 9.7 up to 17 in strain TA98 and of 5.4 up to 6.4 in strain TA100 compared with the reference DF. The RSO condensates caused up to three times stronger mutagenicity than the reference fuel. RME extracts had a moderate but significantly higher mutagenic response in assays of TA98 with metabolic activation and TA100 without metabolic activation. GTL samples did not differ significantly from DF. Regulated emissions (hydrocarbons, carbon monoxide, nitrogen oxides (NOx), and particulate matter) remained below the limits except for an increase in NOx exhaust emissions of up to 15% from the tested biofuels.  相似文献   

4.
Increase in energy demand, stringent emission norms and depletion of oil resources led the researchers to find alternative fuels for internal combustion engines. Many alternate fuels like Alcohols, Biodiesel, LPG, CNG etc have been already commercialized in the transport sector. In this context, pyrolysis of solid waste is currently receiving renewed interest. The disposal of waste tyres can be simplified to some extent by pyrolysis. The properties of the Tyre pyrolysis oil (TPO) derived from waste automobile tyres were analyzed and compared with the petroleum products and found that it can also be used as a fuel for compression ignition engine. However, the crude TPO has a higher viscosity and sulphur content. The crude TPO was desulphurised and then distilled through vacuum distillation. In the present work, DTPO-diesel blends were used as an alternate fuel in a diesel engine without any engine modification. This paper presents the studies on the performance, emission and combustion characteristics of a single cylinder four stroke air cooled DI diesel engine running with the Distilled Tyre pyrolysis oil (DTPO).  相似文献   

5.
R.D. Misra  M.S. Murthy 《Fuel》2011,90(7):2514-2518
Soapnut (Sapindus mukorossi) oil, a nonedible straight vegetable oil was blended with petroleum diesel in various proportions to evaluate the performance and emission characteristics of a single cylinder direct injection constant speed diesel engine. Diesel and soapnut oil (10%, 20%, 30% and 40%) fuel blends were used to conduct short-term engine performance and emission tests at varying loads in terms of 25% load increments from no load to full loads. Tests were carried out for engine operation and engine performance parameters such as fuel consumption, brake thermal efficiency, and exhaust emissions (smoke, CO, UBHC, NOx, and O2) were recorded. Among the blends SNO 10 has shown a better performance with respect to BTE and BSEC. All blends have shown higher HC emissions after about 75% load. SNO 10 and SNO 20 showed lower CO emissions at full load. NOx emission for all blends was lower and SNO 40 blend achieved a 35% reduction in NOx emission. SNO 10% has an overall better performance with regards to both engine performance and emission characteristics.  相似文献   

6.
In this paper, the viscous flow behaviour of Vacuum Gas Oil (VGO) with different fractions (0–10% wt.) of Low Density Polyethylene (LDPE) under dynamic shear has been investigated. Viscosimetry measurements of the blends at temperatures between 333 and 433 K using a BOHLIN Controlled Stress Rheometer, as well as compatibility studies using Differential Scanning Calorimetry (DSC) were carried out. The effects of the variation of the blends polymer content on the activation energy of flow has also been investigated. The results obtained reveal that the blends show Newtonian flow behaviour at higher temperatures for all polymer concentrations studied, while at lower temperatures and at higher polymer concentrations, they show non-Newtonian shear-thinning behaviour. Furthermore, at lower temperatures, these behaviours are more pronounced at lower shear rates than at higher shear rates. As the polymer content in the blend is increased, the shear viscosity increases, the flow behaviour index decreases, and the application of an Arrhenius type equation shows an increase in the activation energy of flow at the lower shear rates.  相似文献   

7.
Deoxygenation reaction of vegetable oils over a carbon-supported metal catalyst was studied as a suitable reaction for production of diesel-fuel-like hydrocarbons. Stearic acid, ethyl stearate, and tristearine have been used as model compounds. Catalytic treatment of all the three reactants resulted in production of n-heptadecane as the main product with high selectivity.  相似文献   

8.
The effect of different types of compounds commonly found in diesel fuel (e.g., paraffins, naphthenes, and aromatics), as well as their chemical structure (e.g., branched versus linear paraffins) on fuel reforming has been investigated. Diesel reforming is very complicated because diesel is a complex mixture of hundreds of compounds with greatly different reactivities. The syngas production rates at the same conditions were observed in this order: paraffins > naphthenes ? aromatics. Additionally, the type of reforming performed (OSR, CPOX, or SR) as well as the process parameters (space velocity and reaction temperature) significantly affected the syngas production rates as well as carbon formation. The reactivity of one fuel component can affect the conversion pattern of others, e.g., overall yields from the reforming of a fuel mixture are not additive of yields from individual fuel components, rather the more reactive component is consumed first. Furthermore, the type of substituent in aromatics and naphthenes, the carbon chain length in n-paraffins, branching in paraffins, and degree of aromatic saturation affect the overall hydrocarbon conversion, syngas selectivity, and carbon formation. The presence of sulfur compounds in the fuel caused significant drops in H2 yields compared to CO yields.  相似文献   

9.
T. Leevijit  G. Prateepchaikul 《Fuel》2011,90(4):1487-1491
The performance and emissions of an indirect injection (IDI)-turbo automobile diesel engine operated with diesel and blends of degummed-deacidified mixed crude palm oil in diesel at portions of 20, 30, and 40 vol.% are examined and compared at various loads and speeds. Although fuel properties of the tested blends do not exactly meet all regulations of Thailand, they are all able to operate the engine. Comparing this with diesel, especially at full loads, shows that all blends produce the same maximum brake torque and power. A higher blending portion results in a little higher brake specific fuel consumption (+4.3% to +7.6%), a slightly lower brake thermal efficiency (-3.0% to -5.2%), a slightly lower exhaust gas temperature (−2.7% to −3.4%), and a significantly lower amount of black smoke (−30% to −45%). The level of carbon monoxide from the 20 vol.% blend is significantly lower (−70%), and the levels of nitrogen oxides from all blends are little higher.  相似文献   

10.
This paper discusses the physical-chemical properties of ethanol-diesel fuel blends. The attention is focused on the properties which influence the injection and engine characteristics significantly. Main properties have been investigated experimentally. The analysis of experimentally obtained fuel properties of tested fuels and their influence on engine characteristics are presented. Physical and chemical properties of diesel fuel and ethanol-diesel fuel blends were measured according to requirements and test methods for diesel fuel (EN590, 2003). The tested fuels were neat mineral diesel fuel (D100), 5% (v/v) ethanol/diesel fuel blend (E05D95), 10% (v/v) ethanol-diesel fuel blend (E10D90) and 15% (v/v) ethanol-diesel fuel blend (E15D85). It has been proved that, for ethanol-diesel fuel blends, some additives are necessary to keep stability under low temperature conditions. Also, cold weather properties test, such as cloud point and pour point tests are negatively affected by phase separation. The rest of the properties, excepting flash point, were within diesel fuel standard specifications. Based on this study, it can be concluded that using additives to avoid phase separation and to raise flash point, blends of diesel fuel with ethanol up to 15% can be used to fuel diesel engines if engine performance tests corroborate it.  相似文献   

11.
An experimental study is conducted to evaluate the use of sunflower, cottonseed, corn and olive straight vegetable oils (SVO) of Greek origin, in blends with diesel fuel at proportions of 10 vol.% and 20 vol.%, in a fully instrumented, six-cylinder, turbocharged and after-cooled, heavy duty (HD), direct injection (DI), ‘Mercedes-Benz’, mini-bus engine installed at the authors’ laboratory. The series of tests are conducted using each of the above blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides (NOx), carbon monoxide (CO) and total unburned hydrocarbons (HC) are measured. With reference to the corresponding neat diesel fuel operation, the vegetable oil blends show reduction of emitted smoke with slight increase of NOx and effectively unaffected thermal efficiency. Theoretical aspects of diesel engine combustion, combined with the very widely differing physical and chemical properties of the vegetable oils against those for the diesel fuel, aid to the correct interpretation of the observed engine behavior.  相似文献   

12.
Chemical compositions of 80 vegetable oils were collected from literature and the properties of the obtainable biodiesel (methyl esters) have been predicted by empirical relationships. The purpose has been to check the viability of predicting if a biodiesel could meet the EN 14214 standards knowing only the fatty acid profile (FAP) of the parent oil. Two parameters were used in this investigation: (i) average number of carbon atoms in the fatty acid chains, (ii) average number of double bonds (C?C) per molecule. Two new empirical relationships have been proposed to predict the viscosity and the cetane number of biodiesel from the two parameters. The range of values of the two parameters leading to biodiesel meeting the EN 14214 standard for viscosity, cetane number, iodine value, and cold filter plugging point have been graphically obtained by overlapping the corresponding level surfaces. Practical applications: This work provides biodiesel producers with indications of the quality of biodiesel without the need for analytical testing of the product (indeed, of the product itself). Only the fatty acid profile of the starting vegetable oil is required. The quality of biodiesel can be estimated by using a chart developed in this work, allowing to estimate, e.g. if the biodiesel meets the European standards. The work can be useful to rapidly screen oil seed crops in studies of genetic engineering that require high throughput.  相似文献   

13.
《Ceramics International》2020,46(8):12180-12191
In this article, MgO/Ca2Mn3O8 nanocatalyst was used for the first time in the transesterification process for the production of green fuel from sunflower oil. Besides, the synthesis of layered nanostructured Ca2Mn3O8 was done for first applied by combustion route as well. The effects of two heating sources including muffle furnace and microwave irradiation, and also various fuels including urea, glycine, and ethylene glycol were investigated on the characteristics of calcium-manganese oxide (Ca2Mn3O8) as the support of the nanocatalysts loaded by MgO as active phase. The synthesized samples were characterized by different analyzes such as AFM, HRTEM, FESEM, FTIR, EDX, XRD, and BET-BJH. The nanocatalyst produced by the microwave irradiation combustion method and urea fuel scored the best performance. This nanocatalyst had the highest specific surface area (46.4 m2/g), and better pore size distribution, too. The roughness of this sample was reported at 5.1 nm in the range of 2 μm. It was found that the optimum sample has converted 96.7% of the oil extracted from sunflower seed to fatty acid esters that are gained by transesterification of fats with methanol. This sample exhibited better reusability in the same operating conditions in proportion to the sample synthesized with muffle furnace in twelve runs, which justified the positive influence of microwave irradiation on the catalytic properties.  相似文献   

14.
《Fuel》2007,86(1-2):143-151
The dynamic viscosities of biodiesel derived from ethyl esters of fish oil, no. 2 diesel fuel, and their blends were measured from 298 K down to their respective pour points. Blends of B80 (80 vol.% biodiesel–20 vol.% no. 2 diesel), B60, B40 and B20 were investigated. All the viscosity measurements were made with a Bohlin VOR Rheometer. Cloud point and pour point measurements were made according to ASTM standards. Arrhenius equations were used to predict the viscosities of the pure Biodiesel (B100), no. 2 diesel fuel (B0) and the biodiesel blends (B80, B60, B40, and B20) as a function of temperature. The predicted viscosities agreed well with measured values. An empirical equation for calculating the dynamic viscosity of these blends as a function of both temperature and blend has been developed. Furthermore, based on the kinematic viscosity and density measurements of B100 up to 573 K by Tate et al. [Tate RE, Watts KC, Allen CAW, Wilkie KI. The viscosities of three biodiesel fuels at temperatures up to 300 °C. Fuel 2006;85:1010–5; Tate RE, Watts KC, Allen CAW, Wilkie KI. The densties of three biodiesel fuels at temperatures up to 300 °C. Fuel 2006;85:1004–9] an empirical equation for predicting the dynamic viscosity of pure biodiesel for temperatures from 277 K to 573 K is given. Empirical equations for predicting the cloud and pour point for a given blend give values in good agreement with experiments. The dynamic viscosity of biodiesel and its blends increases as temperature decreases and show Newtonian behaviour down to the pour point. Dynamic viscosity, cloud point and pour point decreases with an increase in concentration of no. 2 diesel in the blend.  相似文献   

15.
Cherng-Yuan Lin  Kuo-Hua Wang 《Fuel》2003,82(11):1367-1375
Diesel engines are employed as the major propulsion power for in-land and marine transportation vehicles primarily because of their rigid structure, low breakdown rate, high thermal efficiency and high fuel economy. It is expected that diesel engines will be widely used in the foreseeable future. However, the pollutants emitted from diesel engines (in particular nitrogen oxides and particulate matter) are detrimental to the health of living beings and ecological environment have been recognized as the major air pollution source in metropolitan areas and have thus attracted much research interest. Although diesel oil emulsion has been considered as a possible approach to reduce diesel engine pollutants, previous relevant applications were restricted to two-phase emulsions. Three-phase emulsions such as oil-in-water-in-oil briefly denoted as O/W/O emulsions and water-in-oil-in-water, denoted as W/O/W, have not been used as an alternative fuel for any combustion equipment. Studies on the properties of three-phase emulsion as fuel have not been found in the literatures. The emulsification properties of an O/W/O three-phase diesel fuel emulsion were investigated in this experimental study. The results show that the mean drop size of the O/W/O emulsion was reduced significantly with increasing homogenizing machine revolution speed. An increase in inner phase proportion of the O/W/O emulsion resulted in increasing the emulsion viscosity. The viscosity of O/W/O emulsion is greater than that for water-in-oil (denoted briefly as W/O emulsion) for the same water content. More stable emulsion turbidity appeared for three-phase O/W/O diesel emulsions added with emulsifier with HLB values ranging from 6 to 8. In addition, three-phase O/W/O emulsions with greater water content will form a larger number of liquid droplets, leading to a faster formation rate and greater emulsion turbidity at the beginning but a faster descending rate of emulsion turbidity afterwards. The potential for using O/W/O emulsions as an alternative fuel for diesel engines was also evaluated.  相似文献   

16.
T. Laza 《Fuel》2011,90(2):803-810
Vegetable oils are becoming a promising alternative to diesel fuel because they are renewable in nature, can be produced locally and are environmentally friendly. But the major disadvantage of vegetable oils is their inherently high viscosity. There are different approaches to handling this problem. In this study, rapeseed oil (RSO) was blended with the higher alcohols (1-propanol, 2-propanol, isobutanol, 1-butanol and 2-butanol). The blends were prepared at proportions of 10% and 20% alcohol on the basis of volume. The key fuel properties such as density, heating value, viscosity, volatility characteristics (flashpoint and evaporation behaviour) and cetane number (CN) of the blends were measured using the International Standard methods. The results indicate that the viscosity, cold filter plugging point (CFPP), CN and heating value of the blends decrease with an increase in concentration of alcohols in the blends. The viscosity of RSO blends is also shown to be temperature-dependent and approaches that of diesel fuel at higher temperatures. These blends are much safer than diesel fuel in terms of safety for storage and transportation as they possess higher flash points than those of diesel fuel.  相似文献   

17.
Biodiesel defined as mono-alkyl esters of vegetable oils and animal fats, has had a considerable development and great acceptance as an alternative fuel for diesel engines. Density and viscosity are two important physical properties to affect the utilization of biodiesel as fuel. In this work, mixtures of biodiesel and ultra low sulfur diesel (ULSD) were used to study the variation of density (ρ) and kinematic viscosity (η) as a function of percent volume (V) and temperature (T), experimental measurements were carried out for six biodiesel blends at nine temperatures in the range of 293.15-373.15 K. Both, density and viscosity increases because of the increase in the concentration of biodiesel in the blend, and both of them decrease as temperature increases. One empirical correlation was proposed to estimate the density: ρ = α·V + β·T + δ; and three empirical correlations were developed to predict the kinematic viscosity: η = exp[ln(γ) + ?·V + ω/T + λ·V/T2], η = exp[ln(γ) + ω/T + λ·V/T2] and η = exp[ln(γ) + ω/T + λ·V/T]. The corresponding parameters were optimized by the Levenberg-Marquardt method. The estimated values of density and viscosity are in good agreement with the experimental data because absolute average prediction errors of 0.02% and 2.10% were obtained in the Biodiesel(1) + ULSD(2) system studied in this work.  相似文献   

18.
S. Murugan  M.C. Ramaswamy  G. Nagarajan 《Fuel》2008,87(10-11):2111-2121
Alternate fuels like ethanol, biodiesel, LPG, CNG, etc., have been already commercialised in the transport sector. In this context, pyrolysis of solid waste is currently receiving renewed interest. The disposal of waste tyres can be simplified to a certain extent by pyrolysis. In the present work, the crude tyre pyrolyisis oil (TPO) was desulphurised and then distilled through vacuum distillation. Also, two distilled tyre pyrolysis oil (DTPO)–diesel fuel (DF) blends at lower and higher concentrations were used as fuels in a four stroke single cylinder air cooled diesel engine without any engine modification. The results were compared with diesel fuel (DF) operation. Results indicate that the engine can run with 90% DTPO and 10% diesel fuel.  相似文献   

19.
Important fuel properties and emission characteristics of blends (20 vol.%) of soybean oil methyl esters (SME) and partially hydrogenated SME (PHSME) in ultra low sulfur diesel fuel (ULSD) were determined and compared with neat ULSD. The following changes were observed for B20 blends of SME and PHSME versus neat ULSD: improved lubricity, higher kinematic viscosity and cetane number, lower sulfur content, and inferior low-temperature properties and oxidative stability. With respect to exhaust emissions, B20 blends of PHSME and SME exhibited lower PM and CO emissions in comparison to those of neat ULSD. The PHSME blend also showed a significant reduction in THC emissions. Both SME and PHSME B20 blends yielded small increases in NOx emissions. The reduction in double bond content of PHSME did not result in a statistically significant difference in NOx emissions versus SME at the B20 blend level. The test engine consumed a greater amount of fuel operating on the SME and PHSME blends than on neat ULSD, but the increase was smaller for the PHSME blend.  相似文献   

20.
Frank Lujaji  Akos Bereczky 《Fuel》2011,90(2):505-510
Emission problems associated with the use of fossil fuels have led to numerous research projects on the use of renewable fuels. The aim of this study is to evaluate the effects of blends containing croton mogalocarpus oil (CRO)-Butanol (BU) alcohol-diesel (D2) on engine performance, combustion, and emission characteristics. Samples investigated were 15%CRO-5%BU-80%D2, 10%CRO-10%BU-80%D2, and diesel fuel (D2) as a baseline. The density, viscosity, cetane number CN, and contents of carbon, hydrogen, and oxygen were measured according to ASTM standards. A four cylinder turbocharged direct injection (TDI) diesel engine was used for the tests. It was observed that brake specific energy consumption (BSEC) of blends was found to be high when compared with that of D2 fuel. Butanol containing blends show peak cylinder pressure and heat release rate comparable to that of D2 on higher engine loads. Carbon dioxide (CO2) and smoke emissions of the BU blends were lower in comparison to D2 fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号