首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since ethanol is a renewable source of energy and has lower carbon dioxide (CO2) emissions than gasoline, ethanol produced from biomass is expected to be used more frequently as an alternative fuel. It is recognized that for spark ignition (SI) engines, ethanol has the advantages of high octane and high combustion speed and the disadvantage of ignition difficulties at low temperatures. An additional disadvantage is that ethanol may cause extra wear and corrosion of electric fuel pumps. On-board hydrogen production out of ethanol is an alternative plan.Ethanol has been used in Brazil as a passenger vehicle fuel since 1979, and more than six million vehicles on US highways are flexible fuel vehicles (FFVs). These vehicles can operate on E85 - a blend of 85% ethanol and 15% gasoline.This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The combustion characteristics of hydrogen enriched gaseous fuel made from ethanol are also examined.Ethanol has excellent anti-knock qualities due to its high octane number and a high latent heat of evaporation, which makes the temperature of the intake manifold lower. In addition to the effect of latent heat of evaporation, the difference in combustion products compared with gasoline further decreases combustion temperature, thereby reducing cooling heat loss. Reductions in CO2, nitrogen oxide (NOx), and total hydrocarbons (THC) combustion products for ethanol vs. gasoline are described.  相似文献   

2.
Bio-ethanol has the potential to be used as an alternative to petroleum gasoline for the purpose of reducing the total CO2 emissions from internal combustion engines and this paper is devoted to the investigation of using different blending-ratios of bio-ethanol/gasoline with respect to spark timing and injection strategies. The experimental work has been carried out on a direct injection spark ignition engine at a part load and speed condition. It is shown that the benefits of adding ethanol into gasoline are reduced engine-out emissions and increased efficiency, and the impact changes with the blend ratio following a certain pattern. These benefits are attributed to the fact that the addition of ethanol modifies the evaporation properties of the fuel blend which increases the vapour pressure for low blends and reduces the heavy fractions for high blends. This is furthermore coupled with the presence of oxygen within the ethanol fuel molecule and the contribution of its faster flame speed, leading to enhanced combustion initiation and stability and improved engine efficiency.  相似文献   

3.
This paper investigates the effect of using gasoline–ethanol mid-level blends (0–20% ethanol) on engine performance and exhausts emissions on a single cylinder engine by AVL model 5401, spark ignited and electronically controlled with DOHC. Engine tests were conducted for different lambda values, brake power and brake specific fuel consumption, while exhaust emissions were analyzed for carbon monoxide, unburned hydrocarbons and nitrogen oxides. Using blends at different proportions for a steady state of 2000 rpm at partial charge minimizing load and speed variations at a minimum in order to prevent them from being a measurable factor. Results showed that at constant mass fuel rates, the increase in burning rate associated with ethanol is tempered by the process combustion speed reduction related to the enleanment proportional to the ethanol added to gasoline. Blends up to 10% have marginal effects in combustion rates when compared to non-oxygenated fuels, but for 20%, combustion process slows down and increases cyclic dispersion in the results, the effect in fuel consumption observed was lower than predicted by the reduction of energy content in the gasoline, suggesting positive effects in combustion efficiency.  相似文献   

4.
Improvements to the direct-injection spark-ignition combustion system are necessary if the potential reductions in fuel consumption and emissions are to be fully realized in the near future. One critical link in the optimization process is the design and performance of the injectors used for fuel atomization. Multi-hole injectors have become the state-of-the-art choice for gasoline direct-injection engines due to their flexibility in fuel targeting by selection of the number and angle of the nozzle holes, as well as due to their demonstrated stability of performance under a wide range of operating conditions. Recently there has been increased attention devoted to the study of the flow through the internal passages of injectors because of the presence of particular fluid phenomena, such as large-scale vortical motion and cavitation patterns, which have been shown to influence the characteristics of primary break-up. Understanding how cavitation can be used to improve spray atomisation is essential for optimizing mixture preparation quality under early injection and stratified engine operating conditions but currently no data exist for injector-body temperatures representative of real engine operation, particularly at low-load conditions that can also lead to phase change due to fuel flash boiling. This paper outlines results from an experimental imaging investigation into the effects of fuel properties, temperature and pressure conditions on the extent of cavitation, flash boiling and, subsequently, primary break-up. This was achieved by the use of a real-size transparent nozzle of a gasoline injector from a modern direct-injection combustion system. Gasoline, iso-octane and n-pentane fuels were used at 20 and 90 °C injector-body temperatures for ambient pressures of 0.5 and 1.0 bar in order to simulate early homogeneous injection strategies for part-load and wide-open-throttle engine operation.  相似文献   

5.
S. Szwaja  J.D. Naber 《Fuel》2010,89(7):1573-1582
Alcohols, because of their potential to be produced from renewable sources and because of their high quality characteristics for spark-ignition (SI) engines, are considered quality fuels which can be blended with fossil-based gasoline for use in internal combustion engines. They enable the transformation of our energy basis in transportation to reduce dependence on fossil fuels as an energy source for vehicles. The research presented in this work is focused on applying n-butanol as a blending agent additive to gasoline to reduce the fossil part in the fuel mixture and in this way to reduce life cycle CO2 emissions. The impact on combustion processes in a spark-ignited internal combustion engine is also detailed. Blends of n-butanol to gasoline with ratios of 0%, 20%, and 60% in addition to near n-butanol have been studied in a single cylinder cooperative fuels research engine (CFR) SI engine with variable compression ratio manufactured by Waukesha Engine Company. The engine is modified to provide air control and port fuel injection. Engine control and monitoring was performed using a target-based rapid-prototyping system with electronic sensors and actuators installed on the engine [1]. A real-time combustion analysis system was applied for data acquisition and online analysis of combustion quantities. Tests were performed under stoichiometric air-to-fuel ratios, fixed engine torque, and compression ratios of 8:1 and 10:1 with spark timing sweeps from 18° to 4° before top dead center (BTDC). On the basis of the experimental data, combustion characteristics for these fuels have been determined as follows: mass fraction burned (MFB) profile, rate of MFB, combustion duration and location of 50% MFB. Analysis of these data gives conclusions about combustion phasing for optimal spark timing for maximum break torque (MBT) and normalized rate for heat release. Additionally, susceptibility of 20% and 60% butanol-gasoline blends on combustion knock was investigated. Simultaneously, comparison between these fuels and pure gasoline in the above areas was investigated. Finally, on the basis of these conclusions, characteristic of these fuel blends as substitutes of gasoline for a series production engine were discussed.  相似文献   

6.
Traffic-related pollutants are an ever-growing concern. However, the composition of particle emissions from new vehicle technologies using relevant current and prospective fuel blends is not known. This study tested four current and up-and-coming vehicle technologies with nine fuel blends with various concentrations of ethanol and iso-butanol. Vehicles were driven on both the federal test procedure (FTP) and the unified cycle (UC). Additional tests were conducted under steady-state speed conditions. The vehicle technologies include spray-guided gasoline direct injection (SG-GDI), wall-guided gasoline direct injection (WG-GDI), port-fuel injection flex fuel vehicle (PFI-FFV), and a wall-guided GDI-FFV. The fuels consisted of 10–83% ethanol and 16–55% iso-butanol in gasoline. The composition of soot, water-insoluble mass (WIM), water-soluble organic mass, and water-insoluble organic mass (WIOM), and OM was measured. The majority of emissions over FTP and UC were water-insoluble (>70%), and WIOM contributes mostly to OM. PFIs have lower soot and particulate matter (PM) emissions in comparison to the WG-GDI technology even while increasing the renewable fuel content. SG-GDI technology, which has not penetrated the market, show promise as soot and PM emissions are comparable to PFI vehicles while preserving the GDI fuel economy benefits. The WIM fraction in GDI-FFV consistently increased with increasing ethanol concentration. Lastly, the impact of the future vehicle emissions and traffic pollutants is discussed. SG-GDI technology is found to be a promising sustainable technology to enhance fuel economy and also reduce PM, soot, and WIM emissions.

Copyright © 2017 American Association for Aerosol Research  相似文献   


7.
The potential of butanol as an additive in iso-octane used as gasoline fuel was characterized with respect to laminar combustion, and compared with ethanol. New sets of data of laminar burning velocity are provided by using the spherical expanding flame methodology, in a constant volume vessel. This paper presents the first results obtained for pure fuels (iso-octane, ethanol and butanol) at an initial pressure of 0.1 MPa and a temperature of 400 K, and for an equivalence range from 0.8 to 1.4. New data of laminar burning velocity for three fuel blends containing up to 75% alcohol by liquid volume are also provided. From these new experimental data, a correlation to estimate the laminar burning velocity of any butanol or ethanol blend iso-octane-air mixture is proposed.  相似文献   

8.
This study explores the influence of ethanol on particulate matter (PM) emissions from gasoline direct injection (GDI) vehicles, a technology introduced to improve fuel economy and lower CO2 emissions, but facing challenges to meet next-generation emissions standards. Because PM formation in GDI engines is sensitive to a number of operating parameters, two engine calibrations are examined to gauge the robustness of the results. As the ethanol level in gasoline increases from 0% to 20%, there is possibly a small (<20%) benefit in PM mass and particle number emissions, but this is within test variability. When the ethanol content increases to >30%, there is a statistically significant 30%–45% reduction in PM mass and number emissions observed for both engine calibrations. Particle size is unaffected by ethanol level. PM composition is primarily elemental carbon; the organic fraction increases from ~5% for E0 to 15% for E45 fuel. Engine-out hydrocarbon and NOx emissions exhibit 10–20% decreases, consistent with oxygenated fuel additives. These results are discussed in the context of the changing commercial fuel and engine technology landscapes.

Copyright 2012 American Association for Aerosol Research  相似文献   

9.
Jun Li  Chang-Ming Gong  Yan Su  Hui-Li Dou  Xun-Jun Liu 《Fuel》2010,89(12):3919-3925
Optimal injection and ignition timings and the effects of injection and ignition timings on performance and emissions from a high-compression direct-injection stratified charge spark-ignition methanol engine have been investigated experimentally. The results have shown that direct-injection spark-ignition methanol engine, in which a non-uniform mixture with a stratified distribution can be formed, has optimal injection and ignition timings to obtain a good combustion and low exhaust emissions in the overall mode range. Both methanol injection timing and ignition timing have a significant effect on methanol engine performance, combustion, and exhaust emissions. At an engine speed of 1600 rpm, full load, and optimal injection and ignition timings, methanol engine can obtain shorter ignition delay, lesser cycle-by-cycle variation, the maximum in-cylinder pressure, the maximum heat release rate, and higher thermal efficiency compared to the case of non-optimized injection and ignition timings. For methanol engine, the optimization of injection timing and ignition timing can lead to an improvement of brake-specific fuel consumption of more than 10% compared to non-optimized case in the overall load range and engine speed of 1600 rpm. The best compromise between thermal efficiency and exhaust emissions is reached at optimal injection and ignition timings.  相似文献   

10.

PM2.5 combustion emissions from small engines (string trimmer and chainsaw) using gasoline containing biogenic ethanol were collected and analyzed for their 14 C content. The sampling methodology was designed to minimize potential bias from organic artifact effects. The 14 C in the PM2.5 emissions was found to be drastically smaller (approximately a factor of 40) than the 14 C amounts measured in the fuels. This suggests that the current method of using 14 C measurements on ambient aerosol to estimate the contribution from fossil fuel combustion will be little affected by increased use of ethanol-containing gasoline.  相似文献   

11.
Kitae Yeom 《Fuel》2007,86(4):494-503
The combustion characteristics and exhaust emissions in an engine were investigated under homogeneous charge compression ignition (HCCI) operation fueled with liquefied petroleum gas (LPG) and gasoline with regard to variable valve timing (VVT) and the addition of di-methyl ether (DME). LPG is a low carbon, high octane number fuel. These two features lead to lower carbon dioxide (CO2) emission and later combustion in an LPG HCCI engine as compared to a gasoline HCCI engine. To investigate the advantages and disadvantages of the LPG HCCI engine, experimental results for the LPG HCCI engine are compared with those for the gasoline HCCI engine. LPG was injected at an intake port as the main fuel in a liquid phase using a liquefied injection system, while a small amount of DME was also injected directly into the cylinder during the intake stroke as an ignition promoter. Different intake valve timings and fuel injection amount were tested in order to identify their effects on exhaust emissions and combustion characteristics. Combustion pressure, heat release rate, and indicated mean effective pressure (IMEP) were investigated to characterize the combustion performance. The optimal intake valve open (IVO) timing for the maximum IMEP was retarded as the λTOTAL was decreased. The start of combustion was affected by the IVO timing and the mixture strength (λTOTAL) due to the volumetric efficiency and latent heat of vaporization. At rich operating conditions, the θ90-20 of the LPG HCCI engine was longer than that of the gasoline HCCI engine. Hydrocarbon (HC) and carbon monoxide (CO) emissions were increased as the IVO timing was retarded. However, CO2 was decreased as the IVO timing was retarded. CO2 emission of the LPG HCCI engine was lower than that of the gasoline HCCI engine. However, CO and HC emissions of the LPG HCCI engine were higher than those of the gasoline HCCI engine.  相似文献   

12.
Su Han Park  Chang Sik Lee 《Fuel》2011,90(2):748-755
The aim of this work is to investigate the effect of ethanol blending to diesel fuel on the combustion and exhaust emission characteristics of a four-cylinder diesel engine with a common-rail injection system. The overall spray characteristics, such as the spray tip penetration and the spray cone angle, were studied with respect to the ethanol blending ratio. A spray visualization system and a four-cylinder diesel engine equipped with a combustion and emission analyzer were utilized so as to analyze the spray and exhaust emission characteristics of the ethanol blending diesel fuel. Ethanol blended diesel fuel has a shorter spray tip penetration when compared to pure diesel fuel. In addition, the spray cone angle of ethanol blended fuels is larger. It is believed that the lower fuel density of ethanol blended fuels affects the spray characteristics. When the ethanol blended fuels are injected around top dead center (TDC), they exhibit unstable ignition characteristics because the higher ethanol blending ratio causes a long ignition delay. An advance in the injection timing also induces an increase in the combustion pressure due to the sufficient premixed duration. In a four-cylinder diesel engine, an increase in the ethanol blending ratio leads to a decrease in NOx emissions due to the high heat of evaporation of ethanol fuel, however, CO and HC emissions increase. In addition, the CO and HC emissions exhibit a decreasing trend according to an increase in the engine load and an advance in the injection timing.  相似文献   

13.
夏鑫  蔺建民  李妍  陶志平 《化工进展》2022,41(5):2332-2339
氨不仅是一种成本低廉的化工原料,而且由于具有较高的能量密度、易于储运、燃烧不产生CO2等优点被认为是一种有广泛应用前景的清洁燃料。氨燃料具有替代汽油、柴油等化石燃料的应用潜力,为解决环境污染和化石能源短缺等问题提供了新的途径。本文概述了氨燃料的理化特性、燃烧特性以及与多种材料的相容性,介绍了氨作为调合燃料的性能及应用研究进展,尤其对氨-汽油燃料、氨-柴油燃料、氨-正庚烷燃料等燃料体系的研究成果进行了总结。文章集中分析了氨作为发动机燃料的机遇和挑战,尤其指出了氨燃料的生产高能耗、毒性及腐蚀性、氨的燃烧缺陷等问题,并探讨了对应的解决方案。在碳达峰、碳中和的大背景下,氨燃料在我国的发展具有后发优势。  相似文献   

14.
The effect of injector configuration on the combustion and emissions of a compression ignition engine, fuelled on ethanol as the main fuel and dimethyl ether as ignition promoter, were investigated. Baseline constant speed tests were initially performed on diesel fuel using the recommended three-hole configuration. The tests were repeated with the recommended three-hole injector and then with a four-hole injector with ethanol as the main fuel. All other aspects of the engine remained unmodified. The four-hole injector resulted in the combustion of ethanol occurring closer to top dead centre, producing marginally more power and higher fuel conversion efficiency. In the case of the four-hole injector, emissions of both THC and NOX were found to be lower than those produced by the three-hole injector. They were, however, in both cases lower than levels achieved with diesel fuelling.  相似文献   

15.
Amr Ibrahim  Saiful Bari 《Fuel》2010,89(7):1721-1730
The use of lean burn technology in spark-ignition engines has been dominant; however, lean burn technique can not economically satisfy the increasingly restricted future emission standards. Consequently, alternative combustion techniques need to be investigated and developed. In this paper, the use of the stoichiometric air-fuel mixture with exhaust gas recirculation (EGR) technique in a spark-ignition natural gas engine was experimentally investigated. Engine performance and NO emissions were studied for both atmospheric and supercharged inlet conditions. It was found that the use of EGR has a significant effect on NO emissions. NO emissions decreased by about 50% when EGR dilution increased from zero with an inlet pressure of 101 kPa to close to the misfire limit with an inlet pressure of 113 kPa. In addition, the use of EGR effectively suppressed abnormal combustion which occurred at higher inlet pressure. The use of higher inlet pressure in the presence of EGR improved engine performance significantly. Engine brake power increased by about 20% and engine fuel consumption decreased by about 7% while NO emissions decreased by about 12% when 5% of EGR dilution was employed with an inlet pressure of 113 kPa compared to using undiluted stoichiometric inlet mixture with an inlet pressure of 101 kPa.  相似文献   

16.
《Fuel》2006,85(12-13):1605-1612
Results are presented of tests from a variable compression ratio Ricardo E6 single-cylinder spark-ignition (SI) engine operating on ‘Powergas’—a synthetic fuel consisting mainly of carbon monoxide and hydrogen. The tests cover a range of air/fuel ratios from rich to the lean operating limit at different speeds and two different compression ratios. Measured results are given for brake torque, brake specific fuel consumption and the concentrations of carbon monoxide (CO), oxides of nitrogen (NOx) and total unburnt hydro-carbon (THC) emissions in the exhaust gases. Experimental results indicate that ‘Powergas’ produces about 20 and 30% lower engine power output than natural gas (NG) and gasoline fuelling respectively under similar operating conditions. For ‘Powergas’, concentrations of THC and CO in the exhaust were negligible, but carbon dioxide (CO2) and NOx were found to be higher compared to other fuels. The engine simulation program ISIS has been used to simulate some of the exhaust emissions and the results show agreement with the experimental values and help explain the experimental results.  相似文献   

17.
Investigations on surrogate fuels for high-octane oxygenated gasolines   总被引:1,自引:0,他引:1  
Gasoline is a complex mixture that possesses a quasi-continuous spectrum of hydrocarbon constituents. Surrogate fuels that decrease the chemical and/or physical complexity of gasoline are used to enhance the understanding of fundamental processes involved in internal combustion engines (ICEs). Computational tools are largely used in ICE development and in performance optimization; however, it is not possible to model full gasoline in kinetic studies because the interactions among the chemical constituents are not fully understood and the kinetics of all gasoline components are not known. Modeling full gasoline with computer simulations is also cost prohibitive. Thus, surrogate mixtures are studied to produce improved models that represent fuel combustion in practical devices such as homogeneous charge compression ignition (HCCI) and spark ignition (SI) engines. Simplified mixtures that represent gasoline performance in commercial engines can be used in investigations on the behavior of fuel components, as well as in fuel development studies. In this study, experimental design was used to investigate surrogate fuels. To this end, SI engine dynamometer tests were conducted, and the performance of a high-octane, oxygenated gasoline was reproduced. This study revealed that mixtures of iso-octane, toluene, n-heptane and ethanol could be used as surrogate fuels for oxygenated gasolines. These mixtures can be used to investigate the effect of individual components on fuel properties and commercial engines performance.  相似文献   

18.
Amr Ibrahim  Saiful Bari 《Fuel》2008,87(10-11):1824-1834
Natural gas has been recently used as an alternative to conventional fuels in order to satisfy some environmental and economical concerns. In this study, a natural gas spark-ignition engine employing cooled exhaust gas recirculation (EGR) strategy in a high pressure inlet condition was optimized. Both engine compression ratio and start of combustion timing were optimized in order to obtain the lowest fuel consumption accompanied with high power and low emissions. That was achieved numerically by developing a computer simulation of the four-stroke spark-ignition natural gas engine. A two-zone combustion model was developed to simulate the in-cylinder conditions during combustion. A kinetic model based on the extended Zeldovich mechanism was also developed in order to predict NO emission. In addition, a knocking model was incorporated with the two-zone combustion model in order to predict any auto-ignition that might occur. It was found that the value of the compression ratio at which the minimum fuel consumption occurs varies with the engine speed. A minimum fuel consumption of about 200 g/kW h was achieved at an engine speed of 1500 rpm, inlet conditions of 200 kPa and 333 K, and a compression ratio of about 12. Also, it was found that cooled EGR can significantly reduce NO emission at high compression ratio conditions. NO emission decreased by about 28% when EGR was increased from 20% at compression ratio of 10 to 27% at compression of 12 at the same engine speed of 3000 rpm.  相似文献   

19.
Recently a “Biofuels Promotion and Development Law” was approved in Mexico that requires increasing volumes of renewable to blend into the transportation fuel pool, much of which is likely to be ethanol. Emissions data under the three different driving conditions of the United States FTP-75 certification cycle were obtained for regulated, toxic and carbonyl compounds using recent model year vehicles representing 61% of the typical fleet available in Mexico. Ozone-forming potential and specific reactivity of tailpipe and evaporative emissions were also calculated. Comparison were performed using the traditional methyl-tertiary butyl ether employed in Mexico with an ethanol fuel at the same level of oxygen content, taking into account the current fuel specifications and the stream stocks available at the Mexican refineries. The results suggest that the contribution of cold start to regulated emissions range from 37% to 40% whiles those of toxic from 40% to 47% in both fuels. Results also indicate an increase in the rates of evaporative emissions of higher Specific Reactivy with the ethanol fuel. Estimation of the percent reduction of pollutants using the Complex Model of the USA Environmental Protection Agency suggests that volatile organic compounds will exceeds the limits imposed by the model if vapour pressure of the ethanol gasoline is not properly adjusted.  相似文献   

20.
Rong-Horng Chen  Ming-Hsun Wu 《Fuel》2010,89(3):604-610
Substitution of bio-fuels for fossil fuels in gasoline engines is conventionally achieved by premixing ethanol and gasoline before use. The drawbacks are the high purity ethanol (>95%) required for mixing to prevent phase separation and the invariable fraction of ethanol throughout the drive cycle. In this study, an independently controlled set of aqueous alcohols injectors were installed at the manifold alongside the gasoline injectors. Aqueous alcohols with high water content can be injected as a substitutional fuel for gasoline. The fraction of ethanol can be controlled to achieve best engine performance and emissions. Engine tests showed that, at highway driving condition, the engine compensated for the aqueous alcohol and reduced gasoline flowrate. However, at high-load running, the ECU (Engine Control Unit) no longer reads the feedback signals to reduce gasoline supply and the engine burned at fuel-rich conditions; both the engine performance and emissions deteriorated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号